Примеры по теме Математическая индукция

Раздел Математика
Класс 10 класс
Тип Другие методич. материалы
Автор
Дата
Формат doc
Изображения Есть
For-Teacher.ru - все для учителя
Поделитесь с коллегами:

Пример 1. Найти сумму Sn первых n нечетных чисел:

Sn = 1+ 3 + 5 + ... + (2п- 1).

В таких ситуациях обычно начинают рассматривать частные случаи:

S1=1; S2=1+3=4; S3=1+3+5=9;

S4 = 1 + 3 + 5 + 7= 16; S5 = 1 + 3 + 5 + 7 + 9 = 25.

Какой вывод можно сделать на основе этих частных случаев? В данном случае высказать гипотезу несложно:

сумма первых п нечетных чисел равна квадрату их числа, т. е. квадрату числа складываемых нечетных чисел: Sn = п2.

Пример 2. Пусть требуется найти

Sn = 1 • 3 + 3 • 5 + 5 • 7 + ... + (2n - 1)(2n + 1)

для каждого натурального п.

Рассмотрим частные случаи: S1 = 3, S2 = 18.

Предположим, что

Sn= 1 • 3+3 • 5+5 • 7 + ... + (2n - 1)(2n + 1) = 3n(2n - 1).

Попробуем доказать справедливость этого утверждения методом математической индукции.

1. Базис индукции:

S1=1 • 3 = 3 • 1 ·(2 • 1-1) - равенство верно.

2. Индуктивное предположение: Пусть формула

Sk= 1 • 3 + 3 • 5 + 5 • 7 + ... + (2k - 1)(2k + 1) = 3k(2k - 1)

верна для некоторого произвольного k> 1.

3. Индуктивный переход. Надо доказать справедливость равенства

Sk+1= 1 • 3+3 • 5+5 • 7 + ... + (2k + 1)(2k + 3) = 3(k + 1)(2k + 1).

Очевидно, что Sk+1 = Sk + (2k + 1)(2k + 3). Так как Sk = 3k (2k - 1), то

Sk+1=3k(2k -1) + (2k+1)(2k + 3) = 10k2 + 5k + 3,

но нам нужно было получить

Sk+1 = 3(k + 1)(2k + 1) = 6k2 + 9k + 3.

Так как у нас получился иной результат, то высказанное предположение неверно; на самом деле справедлива формула

Примеры по теме Математическая индукция

Пример 3. Доказать, что при любых натуральных п число 7n + 12п+ 17 делится на 18.

Доказательство.

1. При n = 1 число 71 + 12 • 1 + 17 = 36 кратно 18.

2. Предположим, что для некоторого натурального числа k ≥ 1 число

7k + 12k + 17 делится на 18.

3. Рассмотрим число 7k+1 + 12(k + 1) + 17 и докажем, что оно кратно 18.

Выделим из выражения 7k+1 + 12(k + 1) + 17 число 7k + 12k +17, которое на основании предположения индукции делится на 18. Получим: 7k+1 + 12(k + 1) + +17 = 7 • (7k + 12k + 17) - 6 • 12k - 90 = 7 • (7k + 12k + 17) - (6 • 12k + 90).

Мы видим, что при любом натуральном k число 6 • 12k + 90 = 18(4k + 5)

кратно 18. Итак, мы представили число 7k+1+12(k + 1) + 17 в виде разности двух чисел, каждое из которых делится на 18. Следовательно, и

само число 7k+1 + 12(k + 1) + 17 кратно 18.

Пример 4. Доказать, что при всех натуральных n > 4 выполняется неравенство 2n>n2 .

Решение.

  1. Базис индукции. При n = 5 имеем неравенство 25 > 52, которое выполняется

(32 > 25), значит, утверждение А(5) верно.

2. Предположение индукции. Пусть при некотором произвольном натуральном числе n = k ≥ 5 справедливо неравенство 2k > k2.

3. Индуктивный переход. Докажем справедливость неравенства

2k+1 > (k + 1)2 . Имеем 2k+1 = 2 • 2k , но по предположению индукции 2k > k2 . Умножив последнее неравенство на 2, получим 2 • 2k > 2k2 .

Запишем последнее неравенство в виде

2k+1>(k+1)2+(2k2-(k+1)2). (4)

Если мы докажем, что при любом натуральном k > 5 выражение 2k2 - (k + 1)2 положительно, то из неравенства (4) получим

2k+1> (k + 1)2 + (2k2 - (k +1)2) > (k +1)2,

т. е. требуемое неравенство.

Рассмотрим разность

2k2-(k +1)2 = k2 - 2k-1 = (k - 1)2 - 2.

Но при любом k > 5 имеем (k - 1)2 > 2. Следовательно, (k - 1)2 - 2 > 0 при всех значениях k > 5.

Итак, согласно принципу математической индукции данное неравенство справедливо при всех натуральных n > 4.

Пример5.Доказать, что при всех натуральных п справедливо

неравенство 4n > 7п - 5.

Доказательство.

В данном случае проверим наше неравенство для п = 1 и п = 2.

1. При п = 1 неравенство 41 > 7 • 1-5 верно. При п = 2 имеем

42 > 7 • 2-5 также верное неравенство.

2. Предположим, что для некоторого натурального числа k2 выполняется неравенство 4k > 7k - 5.

3. Докажем, что справедливо неравенство 4k+1 > 7(k + 1) - 5. Умножив обе части неравенства из пункта 2 на 4, мы получим верное неравенство

4 • 4k > 4(7k - 5) <=> 4k+1 > (7(k +1) - 5) + 21(k - 1) - 1. (1)

Но при любом k≥2 число

21(k - 1) - 1= 21(k - 2) + 20 > 0. (2)

Следовательно, справедливо неравенство

7(k+1)-5+21(k- 1) - 1 > 7(k + 1)-5 (3)

Из неравенств (1) и (3) следует неравенство

4k+1>7(k+ 1)-5.

Теперь, пользуясь принципом математической индукции, данное утверждение справедливо для всех натуральных чисел.

Замечание. В данном случае базис индукции - пункт 1 - содержит доказательство данного утверждения для первых двух натуральных чисел n = 1 и n = 2. Это связано с тем, что неравенство (2) не выполняется при k = 1, но справедливо при каждом натуральном k > 1. Поэтому, доказав данное неравенство для n = 1и n = 2, в дальнейшем рассматривались числа k≥2.

Пример 6. Доказать, что если для n положительных чисел а1, а2,...,аn (n> 1) выполнено условие a1а2...аn=1, то

a1 + a2 + ... + an ≥ n (5)

Решение. 1. Базис индукции. Докажем справедливость утверждения при натуральном n = 2. Пусть a1 = а > 0, а2 = b > 0, аb = 1. Тогда

b=1/a . Рассмотрим разность а + b - 2:

a+b-2=a+Примеры по теме Математическая индукция

Таким образом, а + b - 2 ≥ 0, откуда а + b ≥ 2, т.е. утверждение А(1) верно.

  1. Предположение индукции. Пусть данное утверждение справедливо для всех

n=k>2, т. е. для k положительных чисел а1,а2,...,аk таких, что а1а2..аk= 1, выполняется неравенство а1 + a2 + ... + аk≥k.

3. Индуктивный переход. Докажем, что если произведение k + 1 положительных чисел равно 1, т. е. а1а2...аk+1= 1, то их сумма не меньше количества слагаемых:

а1, +а2 + ... +аk+1≥ k + 1. (6)

Отметим, что если все данные числа равны между собой, то каждое из них равно 1 и неравенство (6), очевидно, выполняется. Предположим, что хотя бы одно из заданных положительных чисел меньше 1, например, 0 < ak+1 < 1. Тогда среди оставшихся найдется такое положительное число, которое больше единицы. Пусть аk > 1 (если какие-то другие два числа обладают указанными свойствами, то мы просто их перенумеруем).

Рассмотрим произведение k чисел: а1,a2,...аk-1(akak+1) = 1. По условию все эти числа положительны:

a1>0, а2>0, .... аk-1>0, аkak+1>0,

значит, по предположению индукции имеем

а12+...+аk-1+(аkаk+1)≥k. (7)

Чтобы доказать неравенство (6), перепишем неравенство (7) следующим образом:

a12+...+аk-1kk+1≥k+1+(аkk+1kak+1-1). (8)

Для доказательства неравенства (6) осталось доказать, что

ak+ak+1 -akak+1>0

Левую часть последнего неравенства можно записать так:

ak+ak+1-akak+1-1= (ak-1)+(ak+1-akak+1)=

=(ak-1)+ak+1(1-ak)=(ak-1)-ak+1(ak-1)=(ak-1)(1-ak+1).

Но по условию аk> 1 и аk+1 < 1. Поэтому

ak+ak+1kak+1-1=(ak-1)(1-ak+1)>0 (9)

Тогда неравенство (8) с учетом (9) примет вид

a12+...+ak+1+ak+ak+1≥k+1+ (аk + аk+1- аkаk+1- 1) > k + 1.

Итак, неравенство(6)доказано.


© 2010-2022