Лекции 1 курс информатика

Раздел Информатика
Класс -
Тип Другие методич. материалы
Автор
Дата
Формат doc
Изображения Нет
For-Teacher.ru - все для учителя
Поделитесь с коллегами:


МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ
Федеральное государственное образовательное учреждение

«Таганрогский техникум питания и торговли»







КУРС ЛЕКЦИЙ



ПО ДИСЦИПЛИНЕ

«Информатика и ИКТ»

1 курс



Автор:

Бондаренко О.А.,

Преподаватель дисциплины

«Информатика и ИКТ»















2015

Методическое пособие «Сборник лекций» по дисциплине «Информатика и ИКТ»

Сборник лекций по Информатике и ИКТ

Методическое пособие представляет собой конспект лекций, которые предназначены в помощь обучающимся первых курсов. Могут быть использованы как на занятиях, так и для организации самостоятельной внеаудиторной работы по учебной дисциплине «Информатика и ИКТ»

Составитель О.А. Бондаренко - преподаватель «Информатики и ИКТ» ТТПиТ г. Таганрог. 2015г., 57стр.



Оглавление


Оглавление……………………………………………………………………………………3

Раздел I «Информационная деятельность человека»………………………………….5

Тема 1.1. Основные этапы развития информационного общества. Этапы развития технических средств и информационных ресурсов…………………………………….5

Лекция №1. Введение. Основные этапы развития информационного общества.....5

  1. Этапы развития информационного общества…………………………………..5

  2. Информационные ресурсы……………………..………………………………….7

  3. Контрольные вопросы……………………………………………………………..8

Тема 1.2. «Виды профессиональной информационной деятельности человека с использованием технических средств и информационных ресурсов. Правовые нормы, относящиеся к информации……………………………………………………..8

Лекция №2. Виды профессиональной информационной деятельности человека с использованием ТС и ИР. Правовые нормы……………………………………………8

  1. Информационная деятельность человека…………………………………………...8

  2. Правовые нормы..............................................................................................................11

  3. Контрольные вопросы…………………………………………………………………13

Раздел II «Информация и информационные процессы»………………………………14

Тема 2.1. «Подходы к понятию информации и измерению информации. Информационные объекты различных видов. Универсальность дискретного (цифрового) представления информации»……………………………………………...14

Лекция №3 Подходы к понятию информации и измерению информации. Информационные объекты различных видов………………………………………….14

  1. Термин «информация»……………………………………………………………..14

  2. Подходы к измерению информации……………………………………………...15

  3. Единицы измерения информации………………………………………………..15

  4. Контрольные вопросы……………………………………………………………..16

Тема 2.2. «Основные информационные процессы и их реализация с помощью компьютеров: обработка, хранение, поиск, и передача информации».......................16

Лекция №4. Основные информационные процессы и их реализация с помощью компьютеров: обработка, хранение, поиск и передача информации………………..16

  1. Поиск информации…………………………………………………………………16

  2. Обработка информации............................................................................................17

  3. Хранение информации……………………………………………………………..18

  4. Архивы……………………………………………………………………………….20

  5. Контрольные вопросы……………………………………………………………..21

Лекция №5. Поиск информации с использованием компьютера. Программные поисковые сервисы…………………………………………………………………………21

  1. Поиск информации…………………………………………………………………22

  2. Информационно-поисковые системы……………………………………………23

  3. Поисковые технологии информационных систем……………………………...26

  4. Контрольные вопросы……………………………………………………………..27

Лекция №6. Передача информации между компьютерами. Проводная и беспроводная связь…………………………………………………………………………27

  1. Передача информации……………………………………………………………...27

  2. Способы соединения сетевых устройств…………………………………………28

  3. Беспроводная связь…………………………………………………………………33

  4. Контрольные вопросы……………………………………………………………...43

Тема 2.3. «Управление процессами. Представление об автоматических и автоматизированных системах»…………………………………………………………..43

Лекция №7. Управление процессами. АСУ……………………………………………...43

  1. Управление…………………………………………………………………………43

  2. Автоматизированная система управления…………………………………….43

  3. Функции АСУ……………………………………………………………………..44

  4. Контрольные вопросы…………………………………………………………....45

Раздел III «Основные характеристики компьютеров. Архитектура ПК. Виды программного обеспечения компьютеров»……………………………………………45

Тема 3.1. «Основные характеристики компьютеров. Архитектура ПК. Виды программного обеспечения компьютеров»……………………………………………45

Лекция №8. Основные характеристики компьютеров. Архитектура ПК. Виды программного обеспечения компьютеров……………………………………………..45

  1. Аппаратные средства……………………………………………………………..45

  2. Схема фон Неймана……………………………………………………………….45

  3. Внешняя память…………………………………………………………………..48

  4. Контрольные вопросы……………………………………………………………57











Раздел I «Информационная деятельность человека»

Тема 1.1. Основные этапы развития информационного общества. Этапы развития технических средств и информационных ресурсов.

Лекция №1. Введение. Основные этапы развития информационного общества.

План

  1. Этапы развития информационного общества.

  2. Информационные ресурсы.

  3. Контрольные вопросы.


  1. Этапы развития информационного общества.

В истории человеческого общества несколько раз происходили радикальные изменения в информационной области, которые можно назвать информационными революциями.

Информационная революция - это этап появления средств и методов обработки информации, вызывавших кардинальные изменения в обществе.

Первая информационная революция была связана с изобретением письменности. Изобретение письменности позволило накапливать и распространять знания. Цивилизации, освоившие письменность, развивались быстрее других. достигали более высокого культурного и экономического уровня. Примерами могут служить Древний Египет, страны Междуречья, Китай. Позднее переход к алфавитному способу письма сделал письменность более доступной и способствовал смещению центров цивилизации в Европу (Греция, Рим).

Вторая информационная революция (в середине XVI в.) была связана с изобретением книгопечатания. Стало возможным не только сохранять информацию, но и сделать ее массово-доступной. Все это ускорило развитие науки и техники, помогло промышленной революции, Книги перешагнули границы стран, что способствовало началу сознания общечеловеческой цивилизации.

Третья информационная революция (в конце XIX в.) была обусловлена прогрессом средств связи. Телеграф, телефон, радио позволили оперативно передавать информацию на любые расстояния. Эта революция совпала с периодом бурного развития естествознания.

Четвертая информационная революция (в 70-х гг. XX в.) связана с появлением микропроцессорной техники и, в частности, персональных компьютеров. Вскоре после этого возникли компьютерные телекоммуникации, радикально изменившие системы хранения и поиска информации.

В настоящее время в мире накоплен огромный информационный потенциал, которым люди не могут пользоваться в полной мере в силу ограниченности своих возможностей. Это привело к необходимости внедрения новых технологий обработки и передачи информации и послужило началом перехода от индустриального общества к информационному. Этот процесс начался с середины XX в.

Основные черты информационного общества.

В информационном обществе главным ресурсом является информация, это общество, в котором большинство работающих занято производством, хранением, обработкой и передачей информации.

В качестве критериев развитости информационного общества можно перечислить следующие:

наличие компьютеров,

уровень развития компьютерных сетей

доля населения, занятого в информационной сфере, а также использующего информационные технологии в своей повседневной деятельности.

Однако, следует отметить, что в настоящее время ни одно государство не находится в этой стадии. Ближе всех к информационному обществу подошли США, Япония, ряд стран Западной Европы.

Роль и значение информационных революций

В истории развития цивилизации произошло несколько информационных революций - преобразований общественных отношений из-за кардинальных изменений в сфере обработки информации. Следствием подобных преобразований являлось приобретение человеческим обществом нового качества.

Первая революция связана с изобретением письменности, что привело к гигантскому качественному и количественному скачку. Появилась возможность передачи знаний от поколения к поколениям.

Вторая (середина XVI в.) вызвана изобретением книгопечатания, которое радикально изменило индустриальное общество, культуру, организацию деятельности.

Третья (конец XIX в.) обусловлена изобретением электричества, благодаря которому появились телеграф, телефон, радио, позволяющие оперативно передавать и накапливать информацию в любом объеме.

Четвертая (70-е гг. XX в.) связана с изобретением микропроцессорной технологии и появлением персонального компьютера. На микропроцессорах и интегральных схемах создаются компьютеры, компьютерные сети, системы передачи данных (информационные коммуникации). Этот период характеризуют три фундаментальные инновации:

• переход от механических и электрических средств преобразования информации к электронным;

• миниатюризация всех узлов, устройств, приборов, машин;

• создание программно-управляемых устройств и процессов.

Для создания более целостного представления об этом периоде целесообразно познакомиться с приведенной ниже справкой о смене поколений электронно-вычислительных машин (ЭВМ) и сопоставить эти сведения с этапами в области обработки и передачи информации.

Справка о смене поколений ЭВМ.

1-е поколение (начало 50-х гг.). Элементная база - электронные лампы. ЭВМ отличались большими габаритами, большим потреблением энергии, малым быстродействием, низкой надежностью, программированием в кодах.

2-е поколение (с конца 50-х гг.). Элементная база - полупроводниковые элементы. Улучшились по сравнению с ЭВМ предыдущего поколения все технические характеристики. Для программирования используются алгоритмические языки.

3-е поколение (начало 60-х гг.). Элементная база - интегральные схемы, многослойный печатный монтаж. Резкое снижение габаритов ЭВМ, повышение их надежности, увеличение производительности. Доступ с удаленных терминалов.

4-е поколение (с середины 70-х гг.). Элементная база- микропроцессоры, большие интегральные схемы. Улучшились технические характеристики. Массовый выпуск персональных компьютеров. Направления развития: мощные многопроцессорные вычислительные системы с высокой производительностью, создание дешевых микроЭВМ.

5-е поколение (с середины 80-х гг.). Началась разработка интеллектуальных компьютеров, пока не увенчавшаяся успехом. Внедрение во все сферы компьютерных сетей и их объединение, использование распределенной обработки данных, повсеместное применение компьютерных информационных технологий.

Последняя информационная революция выдвигает на первый план новую отрасль - информационную индустрию, связанную с производством технических средств, методов, технологий для производства новых знаний. Важнейшими составляющими информационной индустрии становятся все виды информационных технологий, особенно телекоммуникации. Современная информационная технология опирается на достижения в области компьютерной техники и средств связи.

Информационная технология (ИТ) - процесс, использующий совокупность средств и методов сбора, обработки и передачи данных (первичной информации) для получения информации нового качества о состоянии объекта, процесса или явления.

Телекоммуникации - дистанционная передача данных на базе компьютерных сетей и современных технических средств связи.

Информационное общество - общество, в котором большинство работающих занято производством, хранением, переработкой и реализацией информации, особенно высшей ее формы - знаний.

  1. Информационные ресурсы.

Ресурс - это запас или источник некоторых средств. Традиционно различают следующие виды общественных ресурсов: материальные, энергетические, трудовые, финансовые.

Одним из важнейших видов ресурсов современное общества являются информационные ресурсы. Значимость информационных ресурсов постоянно растет; одним из свидетельств этого является то, что уже на нынешней фазе продвижения к информационному обществу информационные ресурсы становятся товаром, совокупная стоимость которого на рынке сопоставима со стоимостью традиционных ресурсов.

Информационные ресурсы - в широком смысле - совокупность данных, организованных для эффективного получения достоверной информации.

Под информационными ресурсами в соответствии с российским Законом от 20 февраля 1995 г. № 24-Ф3 «Об информации, информатизации и защите информации» понимается информация, зафиксированная на материальном носителе и хранящаяся в информационных системах (библиотеках, архивах, фондах, банках данных и др.).

Информационный ресурс может принадлежать одному человеку или группе лиц, организации, городу, региону, стране, миру. Информационный ресурс является продуктом деятельности наиболее квалифицированной части общества.

Информационные ресурсы общества в настоящее время рассматриваются как стратегические ресурсы, аналогичные по значимости ресурсам материальным, сырьевым, энергетическим, трудовым и финансовым. Однако между информационными и другими ресурсами существует одно важнейшее различие: всякий ресурс после использования исчезает (сожженное топливо, израсходованные финансы), а информационный ресурс остается, им можно пользоваться многократно, он копируется без ограничения. Более того, по мере использования информационный ресурс имеет тенденцию увеличиваться, так как использование информации редко носит совершенно пассивный характер, чаще при этом генерируется дополнительной информацией.

Крупнейшей категорией информационных ресурсов являются национально- информационные ресурсы. Возможный способ их классификации:

  • Библиотечные ресурсы

  • Архивные ресурсы

  • Научно- техническая информация

  • Правовая информация

  • Информация государственных структур

  • Отраслевая информация

  • Финансовая и экономическая информация

  • Информация о природных ресурсах

  • Информация предприятий и учреждений

Образовательные информационные ресурсы разного рода учебных заведений имеют примерно схожую структуру. Например, информационные ресурсы вуза могут быть классифицированы так:

  • Учебники, учебные пособия, учебно-методические материалы;

  • Нормативно-правовые акты системы образования (законы, государственные стандарты и т.п.);

  • Приказы и иные текущие документы Министерства образования Российской Федерации и иных ведомств;

  • Кадровая информация о преподавателях, сотрудниках и студентах;

  • Экономическая информация (бухгалтерии, планово-экономического отдела и т.п.);

  • Информация о материальных ресурсах (здании, мебели, оборудовании и т.п.);

  • Архивные материалы

  • Информация по проблемам образования, размещенная на специальных сайтах в Интернете.

  1. Контрольные вопросы

  1. Назовите «информационные революции» и чем они были обусловлены.

  2. Сколько смен поколений ЭВМ было и в какое время?

  3. Что такое информационные ресурсы?

  4. Способ квалификации национально- информационных ресурсов.

Тема 1.2. «Виды профессиональной информационной деятельности человека с использованием технических средств и информационных ресурсов. Правовые нормы, относящиеся к информации.

Лекция №2. Виды профессиональной информационной деятельности человека с использованием ТС и ИР. Правовые нормы

План

  1. Информационная деятельность человека

  2. Правовые нормы

  3. Контрольные вопросы


  1. Информационная деятельность человека

Информационная деятельность человека - это деятельность, связанная с процессами получения, преобразования, накопления и передачи информации.

Все люди в своей жизни занимаются информационной деятельностью (получают письма, читают книги, хранят фото- и видеоархивы, разговаривают по телефону, решают задачи, разгадывают кроссворды и т. п.); для многих она является профессиональной.

Тысячелетиями предметами труда людей были материальные объекты. Все орудия труда от каменного топора до первой паровой машины, электромотора или токарного станка были связаны с обработкой вещества, использованием и преобразованием энергии. Вместе с тем человечеству всегда приходилось решать задачи управления, накопления, обработки и передачи информации, опыта, знания. Возникали группы людей, чья профессия связана исключительно с информационной деятельностью. В древности это были, например, жрецы, летописцы, затем - ученые и т.д.

По мере развития общества постоянно расширялся круг людей, чья профессиональная деятельность была связана с обработкой и накоплением информации. Постоянно рос и объем человеческих знаний, опыта, а вместе с ним количество книг, рукописей и других письменных документов. Появилась необходимость создания специальных хранилищ этих документов - библиотек, архивов. Информацию, содержащуюся в книгах и других документах, необходимо было не просто хранить, а упорядочивать, систематизировать. Так возникли библиотечные классификаторы, предметные и алфавитные каталоги и другие средства систематизации книг и документов, появились профессии библиотекаря, архивариуса.

В результате научно-технического прогресса человечество создавало все новые средства и способы сбора (запись звуковой информации с помощью микрофона, фотоаппарат, кинокамера), хранения (бумага, фотопленка, грампластинки, магнитная пленка), передачи информации (телефон, телеграф, радио, телевидение, спутники). Но важнейшее в информационных процессах - обработка и целенаправленное преобразование информации - осуществлялось до недавнего времени исключительно человеком.

Вместе с тем постоянное совершенствование техники, производства привело к резкому возрастанию объема информации, которой приходится оперировать человеку в процессе его профессиональной деятельности.

Во второй половине XX века выпуск научно-технической печатной продукции стал подобен нарастающей лавине. Ни отдельный человек, ни специальные организации, созданные для обработки поступающей информации, не могли не только освоить весь информационный поток, но и оперативно находить в нем то, что требовалось для тех или иных работ. Сложилась парадоксальная ситуация, когда для получения нужной информации легче и дешевле было провести исследования заново, чем разыскать ее в научной литературе. Информационная система, основанная на бумажных носителях, переросла свои возможности. Назрел информационный кризис, т. е. ситуация, когда информационный поток так увеличился, что стал недоступен обработке в приемлемое время.

Можно сказать, что нам, живущим на рубеже веков и тысячелетий, повезло стать свидетелями грандиозных изменений на нашей родной планете. И результатом этих изменений стало ускорение появления знаний. Информационный поток буквально обрушивается на нас. Если первое удвоение общего количества знаний на Земле произошло за период от рубежа нашей эры до 1750 года, то второе удвоение случилось уже за 150 лет, к началу двадцатого столетия, а третье - за 50 лет - к 1950 году.

В дальнейшем объемы знаний удваивались еще более стремительными темпами: до 1970 года - на протяжении 10 лет, после 1970 года - каждые 5 лет, а с 1991 года - ежегодно! По сути, мы живем в обществе, где могущество любой страны определяется ее информационным потенциалом и возможностью быстро обеспечить необходимыми и надежными сведениями всех, кто в них заинтересован.

Выходом из создавшейся ситуации явилось изобретение электронно-вычислительных машин (ЭВМ) и персональных компьютеров, создание телекоммуникационной инфраструктуры (баз данных и сетей разных типов).

Но к современным техническим средствам работы с информацией относятся не только компьютеры, но и другие устройства, обеспечивающие ее передачу, обработку и хранение:

сетевое оборудование: модемы, кабели, сетевые адаптеры;

аналого-цифровые и цифро-аналоговые преобразователи;

цифровые фото- и видеокамеры, цифровые диктофоны;

записывающие устройства (CD-R, CD-RW, DVD-RW и др.);

полиграфическое оборудование;

цифровые музыкальные студии;

медицинское оборудование для УЗИ и томографии;

сканеры в архивах, библиотеках, магазинах, на экзаменах и избирательных участках;

ТВ-тюнеры для подачи телевизионного сигнала в компьютер;

плоттеры и различные принтеры;

мультимедийные проекторы;

флэш-память, используемая также в плеерах и фотоаппаратах;

мобильные телефоны.

Кроме персональных компьютеров существуют мощные вычислительные системы для решения сложных научно-технических и оборонных задач, обработки огромных баз данных, работы телекоммуникационных сетей (Интернет):

многопроцессорные системы параллельной обработки данных (управление сложными технологическими процессами);

серверы в глобальной компьютерной сети, управляющие работой и хранящие огромный объем информации;

специальные компьютеры для проектно-конструкторских работ (проектирование самолетов и космических кораблей, мостов и зданий и пр.).

Все перечисленные технические средства и системы предназначены для работы с информационными ресурсами (ИР) в различных отраслях экономики. В настоящее время компьютеры прочно вошли в жизнь современного человека, широко применяются в производстве, проектно-конструкторских работах, бизнесе и многих других отраслях.

Компьютеры в производстве используются на всех этапах: от конструирования отдельных деталей изделия, его дизайна до сборки и продажи. Система автоматизированного производства (САПР) позволяет создавать чертежи, сразу получая общий вид объекта, управлять станками по изготовлению деталей. Гибкая производственная система (ГПС) позволяет быстро реагировать на изменение рыночной ситуации, оперативно расширять или сворачивать производство изделия или заменять его другим. Легкость перевода конвейера на выпуск новой продукции дает возможность производить множество различных моделей изделия. Компьютеры позволяют быстро обрабатывать информацию от различных датчиков, в том числе от автоматизированной охраны, от датчиков температуры для регулирования расходов энергии на отопление, от банкоматов, регистрирующих расход денег клиентами, от сложной системы томографа, позволяющей «увидеть» внутреннее строение органов человека и правильно поставить диагноз.

Компьютер находится на рабочем столе специалиста любой профессии. Он позволяет связаться с любой точкой земного шара, подсоединиться к фондам крупных библиотек не выходя из дома, использовать мощные информационные системы - энциклопедии, изучать новые науки и приобретать различные навыки с помощью обучающих программ и тренажеров. Модельеру он помогает разрабатывать выкройки, издателю компоновать текст и иллюстрации, художнику - создавать новые картины, а композитору - музыку. Дорогостоящий эксперимент может быть полностью просчитан и имитирован на компьютере.

Разработка способов и методов представления информации, технологии решения задач с использованием компьютеров, стала важным аспектом деятельности людей многих профессий. Можно выделить несколько основных направлений, где информационная деятельность связана с компьютерами.

Информация является объектом правового регулирования.

Исторически традиционным объектом права собственности является материальный объект. Информация сама по себе не является материальным объектом, но она фиксируется на материальных носителях. Первоначально информация находится в памяти человека, а затем она отчуждается и переносится на материальные носители: книги, диски, кассеты и прочие накопители, предназначенные для хранения информации. Как следствие, информация может тиражироваться путем распространения материального носителя. Перемещение такого материального носителя от субъекта-владельца, создающего конкретную информацию, к субъекту-пользователю влечет за собой утрату права собственности у владельца информации.

Интенсивность этого процесса существенно возросла в связи с тотальным распространением сети Интернет. Ни для кого не секрет, что очень часто книги, музыка и другие продукты интеллектуальной деятельности человека безо всякого на то согласия авторов или издательств размещаются на различных сайтах без ссылок на первоначальный источник. Созданный ими интеллектуальный продукт становится достоянием множества людей, которые пользуются им безвозмездно, и при этом не учитываются интересы тех, кто его создавал.

  1. Правовые нормы

Принимая во внимание, что информация практически ничем не отличается от другого объекта собственности, например машины, дома, мебели и прочих материальных продуктов, следует говорить о наличии подобных же прав собственности и на информационные продукты.

^ Право собственности состоит из трех важных компонентов: права распоряжения, права владения и права пользования.

Право распоряжения состоит в том, что только субъект-владелец информации имеет право определять, кому эта информация может быть предоставлена.

Право владения должно обеспечивать субъекту-владельцу информации хранение информации в неизменном виде. Никто, кроме него, не может ее изменять.

^ Право пользования предоставляет субъекту-владельцу информации право ее использования только в своих интересах.

Таким образом, любой субъект-пользователь обязан приобрести эти права, прежде чем воспользоваться интересующим его информационным продуктом. Это право должно регулироваться и охраняться государственной инфраструктурой и соответствующими законами. Как и для любого объекта собственности, такая инфраструктура состоит из цепочки:

законодательная власть (законы)  судебная власть (суд)  исполнительная власть (наказание).

Любой закон о праве собственности должен регулировать отношения между субъектом-владельцем и субъектом-пользователем. Такие законы должны защищать как права собственника, так и права законных владельцев, которые приобрели информационный продукт законным путем. Защита информационной собственности проявляется в том, что имеется правовой механизм защиты информации от разглашения, утечки, несанкционированного доступа и обработки, в частности копирования, модификации и уничтожения.

В настоящее время по этой проблеме мировое сообщество уже выработало ряд мер, которые направлены на защиту прав собственности на интеллектуальный продукт. Нормативно-правовую основу необходимых мер составляют юридические документы: законы, указы, постановления, которые обеспечивают цивилизованные отношения на информационном рынке. Так, в Российской Федерации принят ряд указов, постановлений, законов.

^ Закон РФ №3523-I «О правовой охране программ для ЭВМ и баз данных» дает юридически точное определение понятий, связанных с авторством и распространением компьютерных программ и баз данных. Он определяет, что авторское право распространяется на указанные объекты, являющиеся результатом творческой деятельности автора. Автор имеет исключительное право на выпуск в свет программ и баз данных, их распространение, модификацию и иное использование.

Для современного состояния нашего общества именно вопросы, связанные с нарушением авторских и имущественных прав, являются наиболее актуальными. Значительная часть программного обеспечения, использующегося частными лицами и даже организациями, получена путем незаконного копирования. Эта практика мешает становлению цивилизованного рынка компьютерных программных средств и информационных ресурсов.

Данный вопрос стал для нашей страны особенно актуальным в процессе вступления России в международные организации и союзы - например, во Всемирную торговую организацию. Несоблюдение прав в сфере собственности на компьютерное программное обеспечение стало объектом уголовного преследования на практике.

^ Закон Российской Федерации №149-Ф3 «Об информации, информационных технологиях и защите информации» регулирует отношения, возникающие при:

осуществлении права на поиск, получение, передачу и производство информации;

применении информационных технологий;

обеспечении защиты информации.

В 1996 году в Уголовный кодекс был впервые внесен раздел «Преступления в сфере компьютерной информации». Он определил меру наказания за некоторые виды преступлений, ставших распространенными:

неправомерный доступ к компьютерной информации;

создание, использование и распространение вредоносных программ для ЭВМ;

умышленное нарушение правил эксплуатации ЭВМ и сетей.

В 2006 году вступил в силу закон №152-0Ф3 «О персональных данных», целью которого является обеспечение защиты прав и свобод человека и гражданина при обработке его персональных данных (с использованием средств автоматизации или без использования таких) в том числе защиты прав на неприкосновенность частной жизни.

Правовое регулирование в информационной сфере, в силу ее быстрого развития, всегда будет отставать от жизни. Как известно, наиболее счастливо живет не то общество, в котором все действия людей регламентированы, а наказания за все дурные поступки прописаны, а то, которое руководствуется, в первую очередь, соображениями этического порядка. Это значит в данном случае, что информация не крадется не потому, что за это предусмотрено наказание, а потому, что человек считает воровство низким поступком, порочащим его самого. Именно к таким отношениям между государством и личностью, а также между отдельными членами общества, мы должны стремиться.

В настоящее время решение проблемы правового регулирования в сфере формирования и использования информационных ресурсов находится в России на начальной стадии. Чрезвычайно важно и актуально принятие таких правовых актов, которые смогли бы обеспечить:

охрану прав производителей и потребителей информационных продуктов и услуг;

защиту населения от вредного влияния отдельных видов информационных продуктов;

правовую основу функционирования и применения информационных систем Интернета, телекоммуникационных технологий.

С точки зрения распространения и использования программное обеспечение делят на закрытое (несвободное), открытое и свободное:

^ Закрытое (несвободное) - пользователь получает ограниченные права на использование такого программного продукта, даже приобретая его. Пользователь не имеет права передавать его другим лицам и обязан использовать это ПО в рамках лицензионного соглашения. Лицензионное соглашение, как правило, регламентирует цели применения, например, только для обучения, и место применения, например, только для домашнего компьютера. Распространять, просматривать исходный код и улучшать такие программы невозможно, что закреплено лицензионным соглашением. Нарушение лицензионного соглашения является нарушением авторских прав и может повлечь за собой применение мер юридической ответственности. За нарушение авторских прав на программные продукты российским законодательством предусмотрена гражданско-правовая, административная и уголовная ответственность.

^ Открытое программное обеспечение - имеет открытый исходный код, который позволяет любому человеку судить о методах, алгоритмах, интерфейсах и надежности программного продукта. Открытость кода не подразумевает бесплатное распространение программы. Лицензия оговаривает условия, на которых пользователь может изменять код программы с целью ее улучшения или использовать фрагменты кода программы в собственных разработках. Ответственность за нарушение условий лицензионного соглашения для открытого ПО аналогична закрытому (несвободному).

^ Свободное программное обеспечение - предоставляет пользователю права, или, если точнее, свободы на неограниченную установку и запуск, свободное использование и изучение кода программы, его распространение и изменение. Свободные программы так же защищены юридически, на них распространяются законы, регламентирующие реализацию авторских прав.

Впервые принципы свободного ПО были сформулированы в 70-х годах прошлого века

Свободное программное обеспечение активно используется в Интернете. Например, самый распространённый веб-сервер Apache является свободным, Википедия работает на MediaWiki, также являющимся свободным проектом.

Свободное программное обеспечение, в любом случае, может свободно устанавливаться и использоваться на любых компьютерах. Использование такого ПО свободно везде: в школах, офисах, вузах, на личных компьютерах и во всех организациях и учреждениях, в том числе, и на коммерческих и государственных.

  1. Контрольные вопросы

  1. Что такое информационное общество человека?

  2. Способы сбора информации

  3. Какие Вам известны нормы регламентирующие права на собственность информационных технологий?

  4. На какие правовые категории делиться программное обеспечение?

Раздел II «Информация и информационные процессы»

Тема 2.1. «Подходы к понятию информации и измерению информации. Информационные объекты различных видов. Универсальность дискретного (цифрового) представления информации».

Лекция №3 Подходы к понятию информации и измерению информации. Информационные объекты различных видов

План

  1. Термин «информация»

  2. Подходы к измерению информации

3.Единицы измерения информации

  1. Контрольные вопросы


  1. Термин «информация»

Подходы к понятию информации и измерению информации. Информационные объекты различных видов. Принципы обработки информации компьютером.

С позиции человека информация - это содержание разных сообщений, это самые разнообразные сведения, которые человек получает из окружающего мира через свои органы чувств.

Компьютер - это универсальный программно управляемый автомат для работы с информацией. Компьютер работает с двоичными кодами (1 и 0).

Термин «информация» начал широко употребляться с середины ХХ века. В наибольшей степени понятие информации обязано своим распространением двум научным направлениям: теории связи и кибернетике.

Автор теории связи Клод Шелдон, анализируя технические системы связи (телеграф, телефон, радио) рассматривал их как системы передачи информации. В таких системах информация передается в виде последовательностей сигналов: электрических или электромагнитных.

Основатель кибернетики ^ Норберт Винер анализировал разнообразные процессы управления в живых организмах и в технических системах. Процессы управления рассматриваются в кибернетике как информационные процессы.

^ Информация в системах управления циркулирует в виде сигналов, передаваемых по информационным каналам.

В ХХ веке понятие информация повсеместно проникает в науку. Нейрофизиология (раздел биологии) изучает механизмы нервной деятельности животного и человека. Эта наука строит модель информационных процессов, происходящих в организме. Поступающая извне информация превращается в сигналы электрохимической природы, которые от органов чувств передаются по нервным волокнам к нейронам (нервным клеткам) мозга. Мозг передает управляющую информацию в виде сигналов той же природы к мышечным тканям, управляя органами движения. Описанный механизм хорошо согласуется с кибернетической моделью Н. Винера.

В другой биологической науке - генетике используется понятие наследственной информации, заложенной в структуре молекул ДНК, присутствующих в ядрах клеток живых организмов (растений, животных, человека). Генетика доказала, что эта структура является своеобразным кодом, определяющим функционирование всего организма: его рост, развитие, патологии и т.д. Через молекулы ДНК происходит передача наследственной информации от поколения к поколению.

^ Понятие информации относится к числу фундаментальных, т.е. является основополагающим для науки и не объясняется через другие понятия. В этом смысле информация встает в один ряд с такими фундаментальными научными понятиями, как вещество, энергия, пространство, время. Осмыслением информации как фундаментального понятия занимается наука философия.

Согласно одной из философских концепций, информация является свойством всего сущего, всех материальных объектов мира. Такая концепция информации называется атрибутивной (информация - атрибут всех материальных объектов). Информация в мире возникла вместе со Вселенной. С такой широкой точки зрения информация проявляется в воздействии одних объектов на другие.

Другую философскую концепцию информации называют функциональной. Согласно функциональному подходу, информация появилась лишь с возникновением жизни, так как связана с функционированием сложных самоорганизующихся систем, к которым относятся живые организмы и человеческое общество. Можно еще сказать так: информация - это атрибут, свойственный только живой природе. Это один из существенных признаков, отделяющих в природе живое от неживого.

Третья философская концепция информации - антропоцентрическая, согласно которой информация существует лишь в человеческом сознании, в человеческом восприятии. Информационная деятельность присуща только человеку, происходит в социальных системах. Создавая информационную технику, человек создает инструменты для своей информационной деятельности. Можно сказать, что употребление понятия «информация» в повседневной жизни происходит в антропологическом контексте.

Делая выбор между различными точками зрения, надо помнить, что всякая научная теория - это лишь модель бесконечно сложного мира, поэтому она не может отражать его точно и в полной мере.

  1. Подходы к измерению информации

Существует два подхода к измерению информации: содержательный (вероятностный) и объемный (алфавитный).

Процесс познания окружающего мира приводит к накоплению информации в форме знаний (фактов, научных теорий и т.д.). Получение новой информации приводит к расширению знания или к уменьшению неопределенности знаний. Если некоторое сообщение приводит к уменьшению неопределенности нашего знания, то можно говорить, что такое сообщение содержит информацию.

Пусть у нас имеется монета, которую мы бросаем. С равной вероятностью произойдет одно из двух возможных событий - монета окажется в одном из двух положений: «орел» или «решка». Можно говорить, что события равновероятны.

Перед броском существует неопределенность наших знаний (возможны два события), и, как упадет монета, предсказать невозможно. После броска наступает полная определенность, так как мы видим, что монета в данный момент находится в определенном положении (например, «орел»). Это сообщение приводит к уменьшению неопределенности наших знаний в два раза, так как до броска мы имели два вероятных события, а после броска - только одно, то есть в два раза меньше.

Чем больше неопределенна первоначальная ситуация (возможно большее количество информационных сообщений - например, бросаем не монету, а шестигранный кубик), тем больше мы получим новой информации при получении информационного сообщения (в большее количество раз уменьшится неопределенность знания).

^ Количество информации можно рассматривать как меру уменьшения неопределенности знания при получении информационных сообщений.

  1. Единицы измерения информации

Существует формула - главная формула информатики, которая связывает между собой количество возможных информационных сообщений N и количество информации I, которое несет полученное сообщение:

N = 2I

За единицу количества информации принимается такое количество информации, которое содержится в информационном сообщении, уменьшающем неопределенность знания в два раза. Такая единица названа бит.

Если вернуться к опыту с бросанием монеты, то здесь неопределенность как раз уменьшается в два раза и, следовательно, полученное количество информации равно 1 биту.

2 = 21

Бит - наименьшая единица измерения информации.

С помощью набора битов можно представить любой знак и любое число. Знаки представляются восьмиразрядными комбинациями битов - байтами.

1байт = 8 битов = 23 битов

Байт - это 8 битов, рассматриваемые как единое целое, основная единица компьютерных данных.

ля измерения информации используются более крупные единицы: килобайты, мегабайты, гигабайты, терабайты и т.д.

1 Кбайт = 210 байт = 1 024 байт

1 Мбайт = 220 байт = 210 Кбайт = 1 024 Кбайт = 1 048 576 байт

1 Гбайт = 230 байт = 1 024 Мбайт

1 Тбайт = 240 байт = 1 024 Гбайт

  1. Контрольные вопросы:

  1. Что такое информация?

  2. Подходы измерения информации

  3. Минимальная единица измерения информации

  4. Какие другие более крупные единицы используются для измерения информации

Тема 2.2. «Основные информационные процессы и их реализация с помощью компьютеров: обработка, хранение, поиск, и передача информации»

Лекция №4. Основные информационные процессы и их реализация с помощью компьютеров: обработка, хранение, поиск и передача информации»

План

  1. поиск информации

  2. обработка информации

  3. хранение информации

  4. архивы

  5. контрольные вопросы


  1. поиск информации

Приходится признать, что органы чувств - наш главный инструмент познания мира - не самые совершенные приспособления. Не всегда они точны и не всякую информацию способны воспринять. Не случайно о грубых, приблизительных вычислениях говорят: «на глаз». Если бы не было специальных приборов, то вряд ли человечеству удалось бы проникнуть в тайны живой клетки или отправить к Марсу и Венере космические зонды.

Вся деятельность человека связана с различными действиями с информацией, и помогают ему в этом разнообразные технические устройства.

Одно из древнейших сооружений, используемое для получения астрономической информации, находится в Англии недалеко от города Солсбери. Это Стоунхендж - «висячие камни». Он был построен примерно во II веке до н. э. Стоунхендж состоит из поставленных вертикально каменных столбов, расположенных концентрическими кольцами. На вертикальных камнях лежат горизонтальные перекладины, своего рода арки. 1963 году с помощью новейших методов исследования было уставлено, что каменные арки дают направления на крайние положения Солнца и Луны, а 56 белых лунок помогают предсказать время Солнечного и Лунного затмений.

Одно из древнейших устройств - весы. С их помощью люди получают информацию о массе объекта. Еще один наш старый знакомый - термометр - служит для измерения температуры окружающей его среды.

Поиск

Поиск информации - это извлечение хранимой информации.

какие методы поиска вы знаете? Методы поиска информации:

• непосредственное наблюдение;

• общение со специалистами по интересующему вас вопросу;

• чтение соответствующей литературы;

• просмотр видео, телепрограмм;

• прослушивание радиопередач, аудиокассет;

• работа в библиотеках и архивах;

• запрос к информационным системам, базам и банкам компьютерных данных;

  1. Обработка информации

В приведенных ниже примерах каждый следующий элемент получен по некоторому правилу. Угадайте это правило.

  1. Победа, обеда, беда, еда,...(Ответ. Отбрасывание первой буквы слова.)

  2. 1, 1, 2, 3, 5, 8, 13, ... (Ответ. Каждое число, начиная с третьего, равно сумме двух предыдущих (числа Фибоначчи).)

? Какой информационный процесс был реализован вами в ходе решения заданий?

- обработка

Рассмотрим ещё примеры обработки информации человеком.

Примеры обработки информации

Ученик решает задачу.

Калькулятор производит вычисления.

Художник рисует портрет.

Что общего можно заметить во всех приведённых примерах?

В процессе обработки информации присутствуют три составляющие:

Входная информация

Правило

Выходная информация

Какое определение обработки информации можно дать?

Обработка информации - преобразование информации из одного вида в другой, осуществляемое по строгим формальным правилам

Обрабатывать можно информацию любого вида. Правила обработки могут быть самыми разнообразными.

Системы, в которых наблюдателю доступны лишь входные и выходные величины, а структура и внутренние процессы неизвестны, называют черным ящиком.

как человек обрабатывает информацию?

-думает, осуществляется процесс мышления.

как компьютер обрабатывает информацию?

- в состав ПК входит устройство обработки информации - процессор.

?какие программы используются нами для обработки информации на ПК?

- прикладные

Обработка информации на ПК

Вид информации

(по способу представления)

Прикладная программа

Текстовая

Текстовый процессор WORD, …

Числовая

Табличный процессор Excel, …

Графическая

Растровый графический редактор PAINT, …

Созданную и полученную информацию необходимо хранить.

Что вы знаете о процессе хранения информации?

  1. Хранение информации

Хранение информации - процесс такой же древний, как и жизнь человеческой цивилизации. Уже в древности человек столкнулся с необходимостью хранения информации: зарубки на деревьях, чтобы не заблудиться во время охоты; счет предметов с помощью камешков, узелков; изображение животных и эпизодов охоты на стенах пещер.

В жизни человека процесс длительного хранения информации играет большую роль и подвергается постоянному совершенствованию.

? Какое определение хранения информации можно дать?

Хранение информации - это способ распространения информации в пространстве и времени.

как человек хранит информацию?

- запоминает, записывает.

как компьютер хранит информацию?

- в состав ПК входит устройство хранения информации - жёсткий диск.

- существует так называемая внешняя память компьютера - цифровые носители информации.

Носитель информации - физическая среда, непосредственно хранящая информацию. Основным носителем информации для человека является его собственная биологическая память (мозг человека). Собственную память человека можно назвать оперативной памятью. Здесь слово "оперативный" является синонимом слова "быстрый". Заученные знания воспроизводятся человеком мгновенно. Собственную память мы еще можем назвать внутренней памятью, поскольку ее носитель - мозг - находится внутри нас.

Носитель информации - строго определённая часть конкретной информационной системы, служащая для промежуточного хранения или передачи информации.

Что является основными хранилищами информации для человека, для общества?

Основные хранилища информации


Для человека

Для общества

Память

Библиотеки, видеотеки, фонотеки, архивы, патентные бюро, музеи, картинные галереи

Хранение информации на ПК

Информационная система - это хранилище информации, снабженное процедурами ввода, поиска и размещения и выдачи информации

Компьютерные хранилища

Программа

Базы данных

Система управления базами данных Access, …

Информационно-поисковые системы

Yandex, Google, …

Электронные энциклопедии

Википедия, Большая энциклопедия Кирилла и Мефодия, …

Медиатеки

Школьная медиатека, …

Хранение информации на внешних носителях.

? какие внешние носители существуют?

Хранение очень больших объемов информации оправдано только при условии, если поиск нужной информации можно осуществить достаточно быстро, а сведения получить в доступной форме.

Магнитная лента - носитель магнитной записи, представляющий собой тонкую гибкую ленту, состоящую из основы и магнитного рабочего слоя. Рабочие свойства магнитной ленты характеризуются её чувствительностью при записи и искажениями сигнала в процессе записи и воспроизведения. Наиболее широко применяется многослойная магнитная лента с рабочим слоем из игольчатых частиц магнитно-твёрдых порошков гамма-окиси железа (у-Fе2О3), двуокиси хрома (СrО2) и гамма-окиси железа, модифицированной кобальтом, ориентированных обычно в направлении намагничивания при записи.

где используются магнитные ленты?

Дисковые носители информации относятся к машинным носителям с прямым доступом. Понятие прямой доступ означает, что ПК может «обратиться» к дорожке, на которой начинается участок с искомой информацией или куда нужно записать новую информацию.

Накопители на дисках наиболее разнообразны:

Накопители на гибких магнитных дисках (НГМД), они же флоппи-диски, они же дискеты

Некоторое время назад дискеты были самым популярным средством передачи информации с компьютера на компьютер, так как интернет в те времена был большой редкостью, компьютерные сети тоже, а устройства для чтения-записи компакт дисков стоили очень дорого. Дискеты и сейчас используются, но уже достаточно редко. В основном для хранения различных ключей (например, при работе с системой клиент-банк) и для передачи различной отчетной информации государственным надзорным службам.

Дискета - портативный магнитный носитель информации, используемый для многократной записи и хранения данных сравнительно небольшого объема. Этот вид носителя был особенно распространён в 1970-х - начале 2000-х годов. Вместо термина «дискета» иногда используется аббревиатура ГМД - «гибкий магнитный диск» (соответственно, устройство для работы с дискетами называется НГМД - «накопитель на гибких магнитных дисках», жаргонный вариант - флоповод, флопик, флопарь от английского floppy-disk или вообще "печенюшка"). Обычно дискета представляет собой гибкую пластиковую пластинку, покрытую ферромагнитным слоем, отсюда английское название «floppy disk» («гибкий диск»). Эта пластинка помещается в пластмассовый корпус, защищающий магнитный слой от физических повреждений. Оболочка бывает гибкой или прочной. Запись и считывание дискет осуществляется с помощью специального устройства - дисковод (флоппи-дисковод). Дискета обычно имеет функцию защиты от записи, посредством которой можно предоставить доступ к данным только в режиме чтения. Внешний вид 3,5".

? какой размер дискеты? 1.44мб, но есть и 720кб.

Накопители на оптических компакт-дисках:

Компакт-диск («CD», «Shape CD», «CD-ROM», «КД ПЗУ») - оптический носитель информации в виде диска с отверстием в центре, информация с которого считывается с помощью лазера. Изначально компакт-диск был создан для цифрового хранения аудио (т. н. Audio-CD), однако в настоящее время широко используется как устройство хранения данных широкого назначения (т. н. CD-ROM). Аудио-компакт-диски по формату отличаются от компакт-дисков с данными, и CD-плееры обычно могут воспроизводить только их (на компьютере, конечно, можно прочитать оба вида дисков). Встречаются диски, содержащие как аудиоинформацию, так и данные - их можно и послушать на CD-плеере, и прочитать на компьютере.

Оптические диски имеют обычно поликарбонатную или стеклянную термообработанную основу. Рабочий слой оптических дисков изготавливают в виде тончайших плёнок легкоплавких металлов (теллур) или сплавов (теллур-селен, теллур-углерод, теллур-селен-свинец и др.), органических красителей. Информационная поверхность оптических дисков покрыта миллиметровым слоем прочного прозрачного пластика (поликарбоната). В процессе записи и воспроизведения на оптических дисках роль преобразователя сигналов выполняет лазерный луч, сфокусированный на рабочем слое диска в пятно диаметром около 1 мкм. При вращении диска лазерный луч следует вдоль дорожки диска, ширина которой также близка к 1 мкм. Возможность фокусировки луча в пятно малого размера позволяет формировать на диске метки площадью 1-3 мкм. В качестве источника света используются лазеры (аргоновые, гелий-кадмиевые и др.). В результате плотность записи оказывается на несколько порядков выше предела, обеспечиваемого магнитным способом записи. Информационная ёмкость оптического диска достигает 1 Гбайт (при диаметре диска 130 мм) и 2-4 Гбайт (при диаметре 300 мм).

Широкое применение в качестве носителя информации получили также магнитооптические компакт-диски типа RW (Re Writeble). На них запись информации осуществляется магнитной головкой с одновременным использованием лазерного луча. Лазерный луч нагревает точку на диске, а электромагнит изменяет магнитную ориентацию этой точки. Считывание же производится лазерным лучом меньшей мощности.

Во второй половине 1990-х годов появились новые, весьма перспективные носители документированной информации - цифровые универсальные видеодиски DVD (Digital Versatile Disk) типа DVD-ROM, DVD-RAM, DVD-R с большой ёмкостью (до 17 Гбайт).

Имеются и другие разновидности дисковых носителей информации, например, магнитооптические диски, но ввиду их малой распространенности мы их рассматривать не будем.

  1. Архивы.

Многие помнят то время, когда жесткий диск (винчестер) был размером несколько десятков мегабайт, именно мегабайт, тогда как на сегодняшний день винт имеет размеры в несколько сотен гигабайт и даже есть терабайты.

В том, что, увеличивая объемы винчестеров, мы тем самым увеличиваем и размеры программ, которые мы создаем. На данный момент, на современных винтах можно хранить огромную информацию: много часов прослушивания музыкальных произведений, сотни фильмов, всевозможные компьютерные игры, программы и так далее.

Поэтому вопрос об архивировании данных и сжатия файлов остается таким же актуальным, когда он был актуальным и в 10 лет, и 20 лет назад.

? Почему необходимо запаковать файлы в архив? Да потому, что в один файл можно поместить несколько файлов и архивы на диске занимают места намного меньше.

? Что же такое архивирование данных и сжатие файлов?

Если привести грубую аналогию, то архивирование данных похоже на производство сухого молока - процесс удаления воды из молока, которую можно затем добавить при необходимости. Данные же имеют воду информационную, в файлах встречаются очень много повторов, это и используют для сжатия данных.

архивирование данных - это процесс сжатия файлов, с целью освобождения места на диске.

Особенно хорошо сжимаются тестовые файлы, если повторов очень много, то сжатия можно добиться до 10 раз. Хуже сжимаются цветные графические файлы. Можно сказать, что в среднем архиваторы дают выигрыш в 2-3 раза.

Программа, которая сжимает текстовый файл, называется упаковщиком или архиватором. Программы-упаковщики архивируют не только текстовые файлы, а также программы, звуковые, графические, видеофайлы и другие.

В процессе архивирования данных создается архивный файл, который меньше по объему сжимаемых файлов. После создания архива, сжимаемые файлы можно удалить, тем самым освобождая место на диске.

Если же вам снова понадобилось вернуть архивные файлы в первоначальное состояние, то можно распаковать архив, вернув тем самым файлы на прежнее место. Архив при этом можно удалить, чтобы просто не занимал лишнего места на диске.

Существует достаточное количество архиваторов и столько же типов архивных файлов. Среди них самыми распространенными являются ZIP и RAR.

Если у вас нет на компьютере никакого архиватора, то можно воспользоваться встроенным архиватором Windows, который отвечает за работу с zip-архивами.

Встроенный архиватор Windows не может защитить архив паролем, не может создавать самораспаковывающийся архив, не сможет большой архив порезать на части, чтобы разместить на дискетах или компакт-дисках.

Поэтому, если вы хотите избавить себя от этих ограничений, то вам нужно установить на вашем компьютере отдельную программу-архиватор.

? какие архиваторы вы знаете?

7-ZIP - отличный архиватор - автор Игорь Павлов. Может создавать архивы, используемые в других операционных системах и извлекать файлы из всех архивных форматов.

WinRAR - один из лучших в мире архиваторов - автор Евгений Рошал. Умеет создавать архивы как RAR та и ZIP.

? что такое самораспаковывающийся архив?

Самораспаковывающийся архив - это архив, который распаковывается без всякого архиватора, то есть самостоятельно и его имя кончается на .ехе.

Такой архив можно создать, воспользовавшись окном программы WinRAR, либо используя контекстное меню архивируемого объекта.

Кроме того архиватор может сделать еще много полезных вещей, например, вы можете в RAR создать ZIP-архив, хотя RAR-архивы получаются меньшего размера, закрыть доступ к данным вашего архива, защитив его паролем, и многое другое.

  1. контрольные вопросы

  1. Что такое поиск информации?

  2. Как осуществляется хранение информации в данный момент?

  3. что затрагивает информационный процесс обработка информации?

  4. какие внешние носители вам известны?

  5. что такое внешний носитель с прямым доступом?

  6. для чего необходимы архивы?

  7. что такое самораспаковывающийся архив?

Лекция №5. Поиск информации с использованием компьютера. Программные поисковые сервисы.

План

  1. Поиск информации.

  2. Информационно-поисковые системы .

  3. Поисковые технологии информационных систем.

  4. Контрольные вопросы.


  1. поиск информации

Поиск информации или информационный поиск представляет один из основных информационных процессов. Человечество издревле занималось им. Цели, возможности и характер поиска всегда зависели от наличия, информации, её важности и доступности, а также средств организации поиска.

Конец XX - начало XXI века, характеризуется огромными массивами постоянно растущей разнообразной информации, доступной и представляющей интерес для самых широких слоев социума. Более того, Интернет-технологии и программно-технические средства, также доступные большинству людей, позволяют осуществлять данный процесс в любое время, практически в любом месте по любым запросам.

Поиск - процесс, в ходе которого в той или иной последовательности производится соотнесение отыскиваемого с каждым объектом, хранящимся в массиве. Цель любого поиска заключается в потребности, необходимости или желании находить различные виды информации, способствующие получению лицом, осуществляющим поиск, нужных ему сведений, знаний и т.д. для повышения собственного профессионального, культурного и любого иного уровня; создания новой информации и формирования новых знаний; принятия управленческих решений и т.п.

По оценке специалистов в Интернете работает 30 и более миллионов пользователей. Из них десятки тысяч - в режиме онлайн (англ. "on-line" - интерактивный доступ в любой момент времени) и количество таких пользователей постоянно растет. Это затрудняет организацию оперативного поиска и нахождения нужной такому количеству пользователей информации. Возникают проблемы, обусловленные разнообразными возможностями (видами) поиска информации, различными способами их реализации в информационно-поисковых системах (ИПС), разным уровнем знаний пользователей о возможностях таких систем, особенно в области формирования запросов и обработки данных, полученных в результате выполнения этих запросов и т.д.

Предполагается, что в дальнейшем будут созданы ИПС, способные автоматически адаптироваться с учетом уровня знаний и запросов конкретных пользователей, воспринимать запросы на естественном языке и, используя искусственный интеллект, выдавать им релевантную и пертинентную информацию. Для создания таких ИПС потребуются интеллект и знания конкретных пользователей ИПС или их посредников. Пока же от широкого круга пользователей поисковых систем требуется достаточно хорошо владеть данной предметной областью.

Существуют различные толкования термина "поиск информации" или "информационный поиск".

Термин "информационный поиск" (англ. "information retrieval") ввёл американский математик К. Муэрс. Он заметил, что побудительной причиной такого поиска является информационная потребность, выраженная в форме информационного запроса. К объектам информационного поиска К. Муэрс отнес документы, сведения об их наличии и (или) местонахождении, фактографическую информацию.

Решать проблемы фактографического поиска первыми стали представители библиотек. Они разработали средства информационного поиска, получившие название "справочно-поисковый аппарат" (каталоги, библиографические указатели и др.). В профессиональной отечественной печати данный термин используется с 1970-х годов. Библиотекари определяют "информационный поиск" как нахождение в информационном массиве документов, соответствующих информационному запросу пользователей.

С точки зрения использования компьютерной техники "информационный поиск" - совокупность логических и технических операций, имеющих конечной целью нахождение документов, сведений о них, фактов, данных, релевантных запросу потребителя.

"Релевантность" - устанавливаемое при информационном поиске соответствие содержания документа информационному запросу или поискового образа документа поисковому предписанию.

Существуют и другие определения. В любом случае, информационный поиск вызван потребностью удовлетворения информационных запросов пользователей, ожидающих с помощью поисковых систем оперативно получить необходимые им данные или сведения. Он является методом нацеленного поиска и извлечения релевантных документов и (или) фактов из различных источников информации, например, банков данных или запоминающих устройств. В качестве таковых выступают живые и неживые объекты, представляющие различные источники и носители информации.

Системы, обеспечивающие реализацию подобного поиска информации, называются поисковыми системами (ПС). В традиционных технологиях ПС представляют картотеки и каталоги, адресные и иные справочники, указатели, энциклопедии, справочный аппарат к изданиям и другие материалы.

В 1945 годы американский ученый и инженер В. Буш в статье "Возможный механизм нашего мышления" впервые широко поставил вопрос о необходимости механизации информационного поиска. Начиная с 1960 годов, появляются автоматизированные поисковые системы, работающие с информацией. С этого периода ведутся интенсивные работы в области формирования и реализации принципов и методов информационного поиска.

"Поисковые системы" осуществляют поиск среди документов базы или иных массивов машиночитаемых данных, содержащих заданные слова.

Электронные ПС с помощью обычных или интеллектуальных терминалов (ПЭВМ) дают возможность пользователям производить поисковые запросы при помощи формальных и описывающих содержание элементов и с применением специальных логических операторов; осуществляют поиск среди документов базы или иных массивов машиночитаемых данных, содержащих заданные слова. Поисковые системы позволяют осуществлять только поисковые процедуры и связанные с ними процессы.

  1. Информационно-поисковые системы

ПС с большим набором функций и возможностей обычно входят в состав СУБД и именуются информационно-поисковыми системами. Они также создаются и используются для эффективного нахождения пользователями необходимых им данных, в том числе в Интернете.

Терминологически "информационно-поисковая система" (англ. "information retrieval system", IRS) - представляет систему, предназначенную для поиска и хранения информации; пакет программного обеспечения, реализующий процессы создания, актуализации, хранения и поиска в информационных базах и банках данных.

Информационно-поисковая система трактуется и как система, обеспечивающая поиск и отбор необходимых данных на основе информационно-поискового языка и соответствующих правил поиска, а база данных - как совокупность средств и методов описания, хранения и манипулирования данными, облегчающих сбор, накопление и обработку больших информационных массивов. Организация различных БД отличается видом объектов данных и отношений между ними.

Функционирование современных ИПС основано на двух предположениях:

1) документы, необходимые пользователю, объединены наличием некоторого признака или комбинации признаков;

2) пользователь способен указать этот признак.

Оба эти предположения на практике не выполняются, и можно говорить только о вероятности их выполнения. Поэтому, процесс поиска информации обычно представляет собой последовательность шагов, приводящих при посредстве системы к некоторому результату, и позволяющих оценить его полноту. При этом поведение пользователя, как организующее начало управления процессом поиска, мотивируется не только информационной потребностью, но и разнообразием стратегий, технологий и средств, предоставляемых системой.

Пользователь обычно не имеет исчерпывающих знаний об информационном содержании ресурса, в котором проводит поиск. Оценить адекватность выражения запроса, как и полноту получаемого результата, он может, отыскав дополнительные сведения, или так организовав процесс, чтобы часть результатов поиска могла использоваться для подтверждения или отрицания адекватности другой части. В то же время, для пользователей-профессионалов характерна устойчивость тематического профиля. Когда они являются "информационно-ориентированными", то им свойственно желание и способность организовать информационное пространство проблемы. Это означает, что пользователь создаёт по существу новый, "самостоятельный" проблемно-ориентированный, индивидуально обновляемый и пополняемый ИР, включающий помимо подборок документов также и метаинформацию, например, словари специальной терминологии, классификаторы предметных областей, описания ресурсов и т.д.

Особенность работы пользователя в режиме "самообслуживания", в контексте задачи автоматизации совокупной деятельности, означает, что система должна представлять среду, обеспечивающую поддержку функций потребителя по обработке найденной информации, а также традиционно относящихся к функциям информационного посредника (интерпретация запроса, его перевод на информационно-поисковый язык, выбор ИР, автоматизированный поиск и ручной отбор материалов), но также и такие "обеспечивающие" функции, как: структурирование информационной потребности, лексическая адаптация запроса, оценка, систематизация и обработка результатов поиска, причём на уровне как отдельного документа, так и информационных ресурсов в целом. Технические возможности, которыми располагает пользователь, позволяют ему создавать информационный ресурс - формировать массивы, систематизировать и создавать внешние представления их содержания для собственного или внешнего использования.

ИПС делятся на: традиционные (ручные, механические, электромеханические) и автоматизированные (электронные).

Автоматизированные ИПС (АИПС), используют компьютерные программно-технические средства и технологии и предназначаются для нахождения и выдачи пользователям информации по заданным критериям. Определяющими для понимания методов автоматизации поиска являются два следующих фактора:

1) сравниваются не сами объекты, а описания - так называемые "поисковые образы";

2) сам процесс является сложным (составным и не одноактным) и обычно реализуется последовательностью операций.

Данные в АИПС вводятся на основе специально разрабатываемых форматов ввода. Все сведения об одном объекте в ИПС представляются в виде систематизированных данных, образующих одну строку таблицы и называются записью. При этом, если ИПС представляет электронный каталог библиотеки, то любое библиографическое описание (БО) документа в нём - это одна запись, состоящая из полей, равных количеству элементов БО. Совокупность записей образует БД, которая, как правило, хранится в одном файле. Совокупность БД, объединенных одной СУБД, образует банк данных.

Поскольку АИПС инструмент, используемый человеком при поиске (а не интеллектуальным автомат для поиска информации - готовых решений задач основной деятельности), эффективность её использования зависит от того, насколько хорошо человек знает природу операционных объектов и свойства инструмента, посредством которого он работает с этими объектами.

Информационный поиск подразумевает использование определённых стратегий, методов, механизмов и средств. Поведение пользователя, осуществляющего управление процессом поиска, определяется не только информационной потребностью, но и инструментальным разнообразием системы - технологиями и средствами, предоставляемыми системой.

Стратегия поиска - общий план (концепция, предпочтение, установка) поведения системы или пользователя для выражения и удовлетворения информационной потребности пользователя, обусловленный как характером цели и видом поиска, так и системными "стратегическими" решениями - архитектурой БД, методами и средствами поиска в конкретной АИПС. Выбор стратегии в общем случае является оптимизационной задачей. На практике в значительной степени он определяется искусством достижения компромисса между практическими потребностями и возможностями имеющихся средств.

Метод поиска - совокупность моделей и алгоритмов реализации отдельных технологических этапов: построения поискового образа запроса (ПОЗ), отбора документов (сопоставление поисковых образов запросов и документов), расширения и реформулирования запроса, локализации и оценки выдачи.

Поисковый образ запроса - записанный на ИПЯ текст, выражающий смысловое содержание информационного запроса и содержащий указания, необходимые для наиболее эффективного осуществления информационного поиска.

Методы поиска, т.е. выделение подмножества документов, потенциально содержащих описание решения задачи отбора документов (ОД), являются отражением процесса нахождения решения и зависят от характера задачи и предметной области.

Рассматривая поиск как итеративный процесс, методы сокращения пространства перебора (просматриваемого подмножества) образуют по существу методологическую основу стратегии поиска и могут быть разделены на следующие классы - методы поиска в:

1) одном пространстве (обычно, тематическом);

2) иерархически упорядоченном пространстве;

3) альтернативных пространствах;

4) динамическом (изменяющемся в процессе поиска) пространстве.

Реализуемый метод построения ПОЗа должен обеспечивать эффективные способы построения запроса для достижения целей различного типа.

Механизмы поиска - совокупность реализованных в системе моделей и алгоритмов процесса формирования выдачи документов в ответ на поисковый запрос.

Средства поиска, с одной стороны, - взаимозависимый комплекс информационно-поисковых языков (ИПЯ) и языков определения/управления данными, обеспечивающий структурные и семантические преобразования объектов обработки (документов, словарей, совокупностей результатов поиска), а с другой, - объекты пользовательского интерфейса, обеспечивающие управление последовательностью выбора операционных объектов конкретной АИПС.

Поисковые технологии - унифицированные (оптимизированные в рамках конкретной АИПС) последовательности эффективного использования отдельных средств поиска в процессе взаимодействия пользователя с системой для устойчивого получения конечного и промежуточных результатов.

Навигация как реализация процесса поиска по запросу в выбранной БД - целенаправленная, определяемая стратегией, последовательность использования методов, средств и технологий конкретной АИПС для получения и оценки результата.

Средства навигации позволяют пользователю осуществлять управление процессом поиска. Они предоставляются пользователю в виде интерфейса, позволяющего организовать более или менее эффективный процесс взаимодействия с БД. При этом "дружественность" интерфейса характеризуется не только эргономичностью и понятностью, но и вариантностью выбора операционных объектов.

Процесс поиска информации представляет последовательность шагов, приводящих при посредстве системы к некоторому результату, и позволяющих оценить его полноту. Так как пользователь обычно не имеет исчерпывающих знаний об информационном содержании ресурса, в котором проводит поиск, то оценить адекватность выражения запроса, равно как и полноту получаемого результата, он может, основываясь лишь на внешних оценках или на промежуточных результатах и обобщениях, сопоставляя их, например, с предыдущими.

Процесс поиска можно представить в виде следующих основных компонент:

1) формулирование запроса на естественном языке, выбор поисковых системы и сервисов, формализация запроса на соответствующем ИПЯ;

2) проведение поиска в одной или нескольких поисковых системах;

3) обзор полученных результатов (ссылок);

4) предварительная обработка полученных результатов: просмотр содержания ссылок, извлечение и сохранение релевантных и пертинентных данных;

5) при необходимости, модификация запроса и проведение повторного (уточняющего) поиска с последующей обработкой полученных результатов.

Для уменьшения объёма отобранных материалов осуществляют фильтрацию результатов поиска по типу источников (сайтов, порталов), тематике и другим основаниям.

  1. Поисковые технологии информационных систем

По используемым поисковым технологиям ИС можно разбить на 4 категории:

1. Тематические каталоги;

2. Специализированные каталоги (онлайновые справочники);

3. Поисковые машины (полнотекстовый поиск);

4. Средства метапоиска.

В Интернете ИПС размещается на одном или нескольких серверах. В ИПС собирается, индексируется и регистрируется информация о документах, имеющихся в обслуживаемой системой группе веб-серверов. В документах индексируются все значащие слова или только слова из заголовков.

Тематические каталоги предусматривают обработку документов и отнесение их к одной из нескольких категорий, перечень которых заранее задан. Фактически это индексирование на основе классификации. Индексирование может проводиться автоматически или вручную с помощью специалистов, просматривающих популярные веб-узлы и составляющих краткое описание документов-резюме (ключевые слова, аннотация, реферат).

Специализированные каталоги или справочники создаются по отдельным отраслям и темам, по новостям, по городам, по адресам электронной почты и т. п.

Поисковые машины (самое развитое средство поиска в Интернете) реализуют технологию полнотекстового поиска. Индексируются тексты, расположенные на опрашиваемых серверах. Индекс может содержать информацию о нескольких миллионах документов. Например, в индексе популярной ИПС "AltaVista" более 56 млн. URL-адресов.

При использовании средств метапоиска запрос осуществляется одновременно несколькими поисковыми системами. Результат поиска объединяется в общий, упорядоченный по степени релевантности список. Каждая система обрабатывает только часть узлов сети, что позволяет расширить базу поиска. К подобному классу можно отнести и "персональные программы поиска", позволяющие формировать свои собственные инструменты метапоиска (например, автоматически опрашивать часто посещаемые узлы).

Базы информационных данных могут содержать практически любые виды информации, в том числе в любой комбинации. Информационный поиск осуществляется как по существующим в полнотекстовых ЭИР терминам, так и по специальным элементам, входящим в состав ИПЯ. Для формирования запросов используются специальные информационно-поисковые языки.

ИПС внутри найденной выборки обычно пытаются расположить документы в порядке их "релевантности", то есть близости к введенному пользователем запросу. Критериев такой близости много и выявление близких "по смыслу" к запросу документов не решает проблемы получения информации при отсутствии релевантного документа. Подобная ситуация достаточно тривиальна, в том числе и потому, что пользователь зачастую ищет документ, который сам собирается написать. Следует отметить, что в результате проведенного поиска пользователь может получить как релевантные, пертинентные, так и нерелевантные и непертинентные подмассивы данных.

ИПС фактически являются системами информационного обеспечения и представляют собой базы и банки данных. В качестве объекта в них выступает индивид, организация, отрасль, регион и т.п. Субъектом информационного обеспечения является специалист-информатик, любой потребитель информации.

  1. Контрольные вопросы

  1. Поиск информации, что это?

  2. Какие поисковые технологии информационных систем Вам известны?

  3. Что такое тематические каталоги?

  4. что могут содержать базы информационных технологий?

Лекция №6. Передача информации между компьютерами. Проводная и беспроводная связь.

План

1. Передача информации

2. Способы соединения сетевых устройств

  1. Беспроводная связь

  2. Контрольные вопросы


  1. Передача информации

Передача информации - физический процесс, посредством которого осуществляется перемещение информации в пространстве. Записали информацию на диск и перенесли в другую комнату. Данный процесс характеризуется наличием следующих компонентов:

Источник информации. Приёмник информации (получатель сигнала). Носитель информации. Среда передачи.

Передача информации - заблаговременно организованное техническое мероприятие, результатом которого становится воспроизведение информации, имеющейся в одном месте, условно называемом "источником информации", в другом месте, условно называемом "приёмником информации". Данное мероприятие предполагает предсказуемый срок получения указанного результата.

Для осуществления передачи информации необходимо наличие, с одной стороны, так называемого "запоминающего устройства", или "носителя", обладающего возможностью перемещения в пространстве и времени между "источником" и "приёмником". С другой стороны, необходимы заранее известные "источнику" и "приемнику" правила и способы нанесения и снятия информации с "носителя". С третьей стороны, "носитель" должен продолжать существовать как таковой к моменту прибытия в пункт назначения. (к моменту окончания снятия с него информации "приёмником")

В качестве "носителей" на современном этапе развития техники используются как вещественно-предметные, так и волново- полевые объекты физической природы. Носителями могут быть при определённых условиях и сами передаваемые "информационные" "объекты" (виртуальные носители).

Передача информации в повседневной практике осуществляется по описанной схеме как "вручную", так и с помощью различных автоматов. Современная вычислительная машина, или попросту говоря компьютер, способен открыть все свои безграничные возможности только в том случае, если он подключен к локальной компьютерной сети, которая связывает каналом обмена данными все компьютеры той или иной организации.

Проводные локальные сети являются фундаментальной основой любой компьютерной сети и способны превратить компьютер в чрезвычайно гибкий и универсальный инструмент, без которого попросту невозможен никакой современный бизнес.

Локальная сеть позволяет осуществлять сверхбыстрый обмен данными между вычислительными машинами, реализовать работу с любыми базами данных, осуществлять коллективный выход во всемирную сеть Интернет, работать с электронной почтой, проводить распечатку информации на бумажный носитель, используя при этом всего один единый принт-сервер и многое другое, что оптимизирует рабочий процесс, а значит и увеличивает эффективность бизнеса.

Высокие технологии и технический прогресс современности позволил дополнить локальные компьютерные сети «беспроводными» технологиями. Другими словами, беспроводные сети, функционирующие на обмене радиоволнами определенной фиксированной частоты способны стать прекрасным дополняющим элементом к любым проводным локальным сетям. Их основная особенность заключается в том, что в тех местах, где архитектурные особенности того или иного помещения или здания, где находится фирма или организация, не предоставляют возможности прокладки кабеля локальной сети, с задачей помогут справиться радиоволны.

Однако беспроводные сети являются лишь дополнительным элементом локальной компьютерной сети, где основную работу выполняют магистральные кабели обмена данных.

  1. Способы соединения сетевых устройств

Основной причиной этого является феноменальная надежность проводных локальных сетей, которые используют все современные фирмы и организации, вне зависимости от их размеров и области занятости.

Сетевая топология

Сетевая тополо́гия (от греч. τόπος, - место) - способ описания конфигурации сети, схема расположения и соединения сетевых устройств.

Сетевая топология может быть:

физической - описывает реальное расположение и связи между узлами сети.

логической - описывает хождение сигнала в рамках физической топологии.

информационной - описывает направление потоков информации, передаваемых по сети.

управления обменом - это принцип передачи права на пользование сетью.

Существует множество способов соединения сетевых устройств. Выделяют следующие базовых топологии:

Шина

Линия

Кольцо

Звезда

Полносвязная

Дерево

И дополнительные (производные):

Двойное кольцо

Ячеистая топология

Решётка

Fat Tree

Дополнительные способы являются комбинациями базовых. В общем случае такие топологии называются смешанными или гибридными, но некоторые из них имеют собственные названия, например «Дерево».

Шина (топология компьютерной сети)

Топология типа общая ши́на, представляет собой общий кабель (называемый шина или магистраль), к которому подсоединены все рабочие станции. На концах кабеля находятся терминаторы, для предотвращения отражения сигнала.

Работа в сети

Топология общая шина предполагает использование одного кабеля, к которому подключаются все компьютеры сети. Отправляемое какой-либо рабочей станцией сообщение распространяется на все компьютеры сети. Каждая машина проверяет, кому адресовано сообщение, - если сообщение адресовано ей, то обрабатывает его. Принимаются специальные меры для того, чтобы при работе с общим кабелем компьютеры не мешали друг другу передавать и принимать данные. Для того, чтобы исключить одновременную посылку данных, применяется либо «несущий» сигнал, либо один из компьютеров является главным и «даёт слово» «МАРКЕР» остальным компьютерам такой сети.

Шина самой своей структурой допускает идентичность сетевого оборудования компьютеров, а также равноправие всех абонентов. При таком соединении компьютеры могут передавать информацию только по очереди, - последовательно - потому что линия связи единственная. В противном случае пакеты передаваемой информации будут искажаться в результате взаимного наложения (т. е. произойдет конфликт, коллизия). Таким образом, в шине реализуется режим полудуплексного (half duplex) обмена (в обоих направлениях, но по очереди, а не одновременно (т. е. последовательно, а не параллельно)).

В топологии «шина» отсутствует центральный абонент, через которого передается вся информация, что увеличивает надежность «шины». (При отказе любого центра перестает функционировать вся управляемая им система). Добавление новых абонентов в «шину» достаточно простое и обычно возможно даже во время работы сети. В большинстве случаев при использовании «шины» нужно минимальное количество соединительного кабеля по сравнению с другой топологией. Правда, нужно учесть, что к каждому компьютеру (кроме двух крайних) подходят два кабеля, что не всегда удобно.

«Шине» не страшны отказы отдельных компьютеров, потому что все другие компьютеры сети продолжат нормально обмениваться информацией. Но так как используется только один общий кабель, - в случае его обрыва нарушается работа всей сети. Тем не менее может показаться, что «шине» обрыв кабеля не страшен, поскольку в этом случае остаются две полностью работоспособные «шины». Однако из-за особенности распространения электрических сигналов по длинным линиям связи необходимо предусматривать включение на концах шины специальных устройств - терминаторов.

Без включения терминаторов в «шину» сигнал отражается от конца линии и искажается так, что связь по сети становится невозможной. Таким образом, при разрыве или повреждении кабеля нарушается согласование линии связи, и прекращается обмен даже между теми компьютерами, которые остались физически соединенными между собой. Короткое замыкание в любой точке кабеля «шины» выводит из строя всю сеть. Хотя в целом надежность «шины» все же сравнительно высока, так как выход из строя отдельных компьютеров не нарушит работоспособность сети в целом, поиск, тем не менее, неисправности в «шине» затруднен. В частности: любой отказ сетевого оборудования в «шине» очень трудно локализовать, потому что все сетевые адаптеры включены параллельно, и понять, который из них вышел из строя, не так-то просто.

При построении больших сетей возникает проблема ограничения на длину линии связи между узлами, - в таком случае сеть разбивают на сегменты. Сегменты соединяются различными устройствами - повторителями, концентраторами или хабами. Например, технология Ethernet позволяет использовать кабель длиной не более 185 метров.

Сравнение с другими топологиями

Достоинства

Небольшое время установки сети;

Дешевизна (требуется кабель меньшей длины и меньше сетевых устройств);

Простота настройки;

Выход из строя одной рабочей станции не отражается на работе всей сети.

Недостатки

Неполадки в сети, такие как обрыв кабеля или выход из строя терминатора, полностью блокируют работу всей сети;

Затрудненность выявления неисправностей;

С добавлением новых рабочих станций падает общая производительность сети.

Шинная топология представляет собой топологию, в которой все устройства локальной сети подключаются к линейной сетевой среде передачи данных. Такую линейную среду часто называют каналом, шиной или трассой. Каждое устройство (например, рабочая станция или сервер) независимо подключается к общему кабелю-шине с помощью специального разъема. Шинный кабель должен иметь на конце согласующий резистор, или терминатор, который поглощает электрический сигнал, не давая ему отражаться и двигаться в обратном направлении по шине.

Преимущества и недостатки шинной топологии

Типичная шинная топология имеет простую структуру кабельной системы с короткими отрезками кабелей. Поэтому по сравнению с другими топологиями стоимость ее реализации невелика. Однако низкая стоимость реализации компенсируется высокой стоимостью управления. Фактически, самым большим недостатком шинной топологии является то, что диагностика ошибок и изолирование сетевых проблем могут быть довольно сложными, поскольку здесь имеются несколько точек концентрации. Так как среда передачи данных не проходит через узлы, подключенные к сети, потеря работоспособности одного из устройств никак не сказывается на других устройствах. Хотя использование всего лишь одного кабеля может рассматриваться как достоинство шинной топологии, однако оно компенсируется тем фактом, что кабель, используемый в этом типе топологии, может стать критической точкой отказа. Другими словами, если шина обрывается, то ни одно из подключенных к ней устройств не сможет передавать сигналы.

Примеры

Примерами использования топологии общая шина является сеть 10BASE5 (соединение ПК толстым коаксиальным кабелем) и 10BASE2 (соединение ПК тонким коаксиальным кабелем). Сегмент компьютерной сети, использующей коаксиальный кабель в качестве носителя и подключенных к этому кабелю рабочих станций. В этом случае шиной будет являться отрезок коаксиального кабеля, к которому подключены компьютеры.

Кольцо (топология компьютерной сети)

Кольцо́ - это топология, в которой каждый компьютер соединен линиями связи только с двумя другими: от одного он только получает информацию, а другому только передает. На каждой линии связи, как и в случае звезды, работает только один передатчик и один приемник. Это позволяет отказаться от применения внешних терминаторов.

Работа в сети кольца заключается в том, что каждый компьютер ретранслирует (возобновляет) сигнал, то есть выступает в роли повторителя, потому затухание сигнала во всем кольце не имеет никакого значения, важно только затухание между соседними компьютерами кольца. Четко выделенного центра в этом случае нет, все компьютеры могут быть одинаковыми. Однако достаточно часто в кольце выделяется специальный абонент, который управляет обменом или контролирует обмен. Понятно, что наличие такого управляющего абонента снижает надежность сети, потому что выход его из строя сразу же парализует весь обмен.

Компьютеры в кольце не являются полностью равноправными (в отличие, например, от шинной топологии). Одни из них обязательно получают информацию от компьютера, который ведет передачу в этот момент, раньше, а другие - позже. Именно на этой особенности топологии и строятся методы управления обменом по сети, специально рассчитанные на «кольцо». В этих методах право на следующую передачу (или, как еще говорят, на захват сети) переходит последовательно к следующему по кругу компьютеру.

Подключение новых абонентов в «кольцо» обычно совсем безболезненно, хотя и требует обязательной остановки работы всей сети на время подключения. Как и в случае топологии «шина», максимальное количество абонентов в кольце может быть достаточно большое (1000 и больше). Кольцевая топология обычно является самой стойкой к перегрузкам, она обеспечивает уверенную работу с самыми большими потоками переданной по сети информации, потому что в ней, как правило, нет конфликтов (в отличие от шины), а также отсутствует центральный абонент (в отличие от звезды).

В кольце, в отличие от других топологий (звезда, шина), не используется конкурентный метод посылки данных, компьютер в сети получает данные от стоящего предыдущим в списке адресатов и перенаправляет их далее, если они адресованы не ему. Список адресатов генерируется компьютером, являющимся генератором маркера. Сетевой модуль генерирует маркерный сигнал (обычно порядка 2-10 байт во избежание затухания) и передает его следующей системе (иногда по возрастанию MAC-адреса). Следующая система, приняв сигнал, не анализирует его, а просто передает дальше. Это так называемый нулевой цикл.

Последующий алгоритм работы таков - пакет данных GRE, передаваемый отправителем адресату начинает следовать по пути, проложенному маркером. Пакет передаётся до тех пор, пока не доберётся до получателя.

Сравнение с другими топологиями

Достоинства

Простота установки;

Практически полное отсутствие дополнительного оборудования;

Возможность устойчивой работы без существенного падения скорости передачи данных при интенсивной загрузке сети, поскольку использование маркера исключает возможность возникновения коллизий.

Недостатки

Выход из строя одной рабочей станции, и другие неполадки (обрыв кабеля), отражаются на работоспособности всей сети;

Сложность конфигурирования и настройки;

Сложность поиска неисправностей.

Необходимость иметь две сетевые платы, на каждой рабочей станции.

Применение

Наиболее широкое применение получила в волоконно-оптических сетях. Используется в стандартах FDDI, Token ring.

Звезда (топология компьютерной сети)

Звезда́ - базовая топология компьютерной сети, в которой все компьютеры сети присоединены к центральному узлу (обычно коммутатор), образуя физический сегмент сети. Подобный сегмент сети может функционировать как отдельно, так и в составе сложной сетевой топологии (как правило, «дерево»). Весь обмен информацией идет исключительно через центральный компьютер, на который таким способом возлагается очень большая нагрузка, поэтому ничем другим, кроме сети, он заниматься не может. Как правило, именно центральный компьютер является самым мощным, и именно на него возлагаются все функции по управлению обменом. Никакие конфликты в сети с топологией звезда в принципе невозможны, потому что управление полностью централизовано.

Работа в сети

Рабочая станция, с которой необходимо передать данные, отсылает их на концентратор. В определённый момент времени только одна машина в сети может пересылать данные, если на концентратор одновременно приходят два пакета, обе посылки оказываются не принятыми и отправителям нужно будет подождать случайный промежуток времени, чтобы возобновить передачу данных. Этот недостаток отсутствует на сетевом устройстве более высокого уровня - коммутаторе, который, в отличие от концентратора, подающего пакет на все порты, подает лишь на определенный порт - получателю. Одновременно может быть передано несколько пакетов. Сколько - зависит от коммутатора.

Активная звезда

В центре сети содержится компьютер, который выступает в роли сервера.

Пассивная звезда

В центре сети с данной топологией содержится не компьютер, а концентратор, или коммутатор, что выполняет ту же функцию, что и повторитель. Он возобновляет сигналы, которые поступают, и пересылает их в другие линии связи. Все пользователи в сети равноправны.

Сравнение с другими типами сетей

Достоинства

выход из строя одной рабочей станции не отражается на работе всей сети в целом;

хорошая масштабируемость сети;

лёгкий поиск неисправностей и обрывов в сети;

высокая производительность сети (при условии правильного проектирования);

гибкие возможности администрирования.

Недостатки

выход из строя центрального концентратора обернётся неработоспособностью сети (или сегмента сети) в целом;

для прокладки сети зачастую требуется больше кабеля, чем для большинства других топологий;

конечное число рабочих станций в сети (или сегменте сети) ограничено количеством портов в центральном концентраторе.

Применение

Одна из наиболее распространённых топологий, поскольку проста в обслуживании. В основном используется в сетях, где носителем выступает кабель витая пара UTP категории 3 или 5.

Дерево (топология компьютерной сети)

Топология типа общая Древовидная топология, представляет собой топологию Звезда. Если представить как растут ветки у дерева то мы получим топологию "Звезда", изначально топология называлась именно "древовидная", с течением времени начали в скобках указывать - (звезда). В современной топологии указывается только "звезда". Долгое время базовой топологией считалась именно древовидная, но ее постепенно начали заменять. Выбор звезда или дерево зависит только от личных предпочтений. Различия только в том что в "древовидной" топологии, как правило, схема более строгая и иерархичная в ней легче отслеживать сетевые связи, и эта схема часто использует элементы "шинной" архитектуры. Сеть fat tree (утолщенное дерево) - топология компьютерной сети, является дешевой и эффективной для суперкомпьютеров. В отличие от классической топологии дерево, в которой все связи между узлами одинаковы, связи в утолщенном дереве становятся более широкими (толстыми, производительными по пропускной способности) с каждым уровнем по мере приближения к корню дерева.

Полносвязная топология

Полносвязная топология - топология компьютерной сети, в которой каждая рабочая станция подключена ко всем остальным. Этот вариант является громоздким и неэффективным, несмотря на свою логическую простоту. Для каждой пары должна быть выделена независимая линия, каждый компьютер должен иметь столько коммуникационных портов сколько компьютеров в сети. По этим причинам сеть может иметь только сравнительно небольшие конечные размеры. Чаще всего эта топология используется в многомашинных комплексах или глобальных сетях при малом количестве рабочих станций.

Недостатки

Сложное расширение сети (при добавлении одного узла необходимо соединить его со всеми остальными).

Огромное количество соединений при большом количестве узлов

  1. Беспроводные компьютерные сети

Беспроводные компьютерные сети - это технология, позволяющая создавать вычислительные сети, полностью соответствующие стандартам для обычных проводных сетей без использования кабельной проводки. В качестве носителя информации в таких сетях выступают радиоволны СВЧ-диапазона.

Применение

Существует два основных направления применения беспроводных компьютерных сетей:

Работа в замкнутом объеме (офис, выставочный зал и т. п.);

Соединение удаленных локальных сетей (или удаленных сегментов локальной сети).

Для организации беспроводной сети в замкнутом пространстве применяются передатчики с всенаправленными антеннами. Стандарт IEEE 802.11 определяет два режима работы сети - Ad-hoc и клиент-сервер. Режим Ad-hoc (иначе называемый «точка-точка») - это простая сеть, в которой связь между станциями (клиентами) устанавливается напрямую, без использования специальной точки доступа. В режиме клиент-сервер беспроводная сеть состоит, как минимум, из одной точки доступа, подключенной к проводной сети, и некоторого набора беспроводных клиентских станций. Поскольку в большинстве сетей необходимо обеспечить доступ к файловым серверам, принтерам и другим устройствам, подключенным к проводной локальной сети, чаще всего используется режим клиент-сервер. Без подключения дополнительной антенны устойчивая связь для оборудования IEEE 802.11b достигается в среднем на следующих расстояниях: открытое пространство - 500 м, комната, разделенная перегородками из неметаллического материала - 100 м, офис из нескольких комнат - 30 м. Следует иметь в виду, что через стены с большим содержанием металлической арматуры (в железобетонных зданиях таковыми являются несущие стены) радиоволны диапазона 2,4 ГГц иногда могут вообще не проходить, поэтому в комнатах, разделенных подобной стеной, придется ставить свои точки доступа.

Для соединения удаленных локальных сетей (или удаленных сегментов локальной сети) используется оборудование с направленными антеннами, что позволяет увеличить дальность связи до 20 км (а при использовании специальных усилителей и большой высоте размещения антенн - до 50 км). Причем в качестве подобного оборудования могут выступать и устройства Wi-Fi, нужно лишь добавить к ним специальные антенны (конечно, если это допускается конструкцией). Комплексы для объединения локальных сетей по топологии делятся на «точку-точку» и «звезду». При топологии «точка-точка» организуется радиомост между двумя удаленными сегментами сети. При топологии «звезда» одна из станций является центральной и взаимодействует с другими удаленными станциями. При этом центральная станция имеет всенаправленную антенну, а другие удаленные станции - однонаправленные антенны. Применение всенаправленной антенны в центральной станции ограничивает дальность связи дистанцией примерно 7 км. Поэтому, если требуется соединить между собой сегменты локальной сети, удаленные друг от друга на расстояние более 7 км, приходится соединять их по принципу «точка-точка». При этом организуется беспроводная сеть с кольцевой или иной, более сложной топологией.

Мощность, излучаемая передатчиком точки доступа или же клиентской станции, не превышает 0,1 Вт, но многие производители беспроводных точек доступа ограничивают мощность лишь программным путем, и достаточно просто поднять мощность до 0,2-0,5 Вт. Для сравнения - мощность, излучаемая мобильным телефоном, на порядок больше (в момент звонка - до 2 Вт). Поскольку, в отличие от мобильного телефона, элементы сети расположены далеко от головы, в целом можно считать, что беспроводные компьютерные сети более безопасны с точки зрения здоровья, чем мобильные телефоны.

Если беспроводная сеть используется для объединения сегментов локальной сети, удаленных на большие расстояния, антенны, как правило, размещаются за пределами помещения и на большой высоте.

Еще одно преимущество беспроводной сети связано с тем, что физические характеристики сети делают ее локализованной. В результате дальность действия сети ограничивается лишь определенной зоной покрытия. Для подслушивания потенциальный злоумышленник должен будет находиться в непосредственной физической близости, а значит, привлекать к себе внимание. В этом преимущество беспроводных сетей с точки зрения безопасности. Беспроводные сети имеют также уникальную особенность: их можно отключить или модифицировать их параметры, если безопасность зоны вызывает сомнения.

Несанкционированное вторжение в сеть. Для вторжения в сеть необходимо к ней подключиться. В случае проводной сети требуется электрическое соединение, беспроводной - достаточно оказаться в зоне радиовидимости сети с оборудованием того же типа, на котором построена сеть.

В беспроводных сетях для снижения вероятности несанкционированного доступа предусмотрен контроль доступа по MAC-адресам устройств и тот же самый WEP. Поскольку контроль доступа реализуется с помощью точки доступа, он возможен только при инфраструктурной топологии сети. Механизм контроля подразумевает заблаговременное составление таблицы MAC-адресов разрешенных пользователей в точке доступа и обеспечивает передачу только между зарегистрированными беспроводными адаптерами. При топологии «ad-hoc» (каждый с каждым) контроль доступа на уровне радиосети не предусмотрен.

Для проникновения в беспроводную сеть злоумышленник должен:

Иметь оборудование для беспроводных сетей, совместимое с используемым в сети;

При использовании в оборудовании FHSS нестандартных последовательностей скачков частоты узнать их;

Знать идентификатор сети, закрывающий инфраструктуру и единый для всей логической сети (SSID);

Знать, на какой из 14 возможных частот работает сеть, или включить режим автосканирования;

Быть занесенным в таблицу разрешенных MAC-адресов в точке доступа при инфраструктурной топологии сети;

Знать 40-разрядный ключ шифра WEP в случае, если в беспроводной сети ведется шифрованная передача.

Решить все это практически невозможно, поэтому вероятность несанкционированного вхождения в беспроводную сеть, в которой приняты предусмотренные стандартом меры безопасности, можно считать очень низкой.

Radio Ethernet

Беспроводная связь, или связь по радиоканалу, сегодня используется и для построения магистралей (радиорелейные линии), и для создания локальных сетей, и для подключения удаленных абонентов к сетям и магистралям разного типа. Весьма динамично развивается в последние годы стандарт беспроводной связи Radio Ethernet. Изначально он предназначался для построения локальных беспроводных сетей, но сегодня все активнее используется для подключения удаленных абонентов к магистралям. Radio Ethernet сейчас обеспечивает пропускную способность до 54 Мбит/с и позволяет создавать защищенные беспроводные каналы для передачи мультимедийной информации.

Wi-Fi

Wi-Fi - торговая марка Wi-Fi Alliance для беспроводных сетей на базе стандарта IEEE 802.11. Под аббревиатурой Wi-Fi (от английского словосочетания Wireless Fidelity, которое можно дословно перевести как «высокая точность беспроводной передачи данных») в настоящее время развивается целое семейство стандартов передачи цифровых потоков данных по радиоканалам.

Wi-Fi был создан в 1991 году в Ньивегейн, Нидерланды. Термин «Wi-Fi» изначально был придуман как игра слов для привлечения внимания потребителя «намёком» на Hi-Fi (англ. High Fidelity - высокая точность). Вначале скорость передачи данных была от 1 до 2 Мбит/с. 29 июля 2011 года IEEE (Институт инженеров по электротехнике и электронике) выпустил официальную версию стандарта IEEE 802.22. Это есть Super Wi-Fi. Системы и устройства, поддерживающие этот стандарт, позволят передавать данные на скорости до 22 Мб/с в радиусе 100 км от ближайшего передатчика.

Принцип работы. Обычно схема Wi-Fi сети содержит не менее одной точки доступа и не менее одного клиента. Также возможно подключение двух клиентов в режиме точка-точка, когда точка доступа не используется, а клиенты соединяются посредством сетевых адаптеров «напрямую». Точка доступа передаёт свой идентификатор сети (SSID (англ.)) с помощью специальных сигнальных пакетов на скорости 0,1 Мбит/с каждые 100 мс. Поэтому 0,1 Мбит/с - наименьшая скорость передачи данных для Wi-Fi. Зная SSID сети, клиент может выяснить, возможно ли подключение к данной точке доступа.

По способу объединения точек доступа в единую систему можно выделить:

Автономные точки доступа (называются также самостоятельные, децентрализованные, умные)

Точки доступа, работающие под управлением контроллера (называются также «легковесные», централизованные)

Бесконтроллерные, но не автономные (управляемые без контроллера)

По способу организации и управления радиоканалами можно выделить беспроводные локальные сети:

Со статическими настройками радиоканалов

С динамическими (адаптивными) настройками радиоканалов

Со «слоистой» или многослойной структурой радиоканалов

Преимущества Wi-Fi

Позволяет развернуть сеть без прокладки кабеля, что может уменьшить стоимость развёртывания и/или расширения сети. Места, где нельзя проложить кабель, например, вне помещений и в зданиях, имеющих историческую ценность, могут обслуживаться беспроводными сетями.

Позволяет иметь доступ к сети мобильным устройствам.

Коммерческий доступ к сервисам на основе Wi-Fi предоставляется в таких местах, как Интернет-кафе, аэропорты и кафе по всему миру (обычно эти места называют Wi-Fi-кафе).

Мобильность. Вы больше не привязаны к одному месту и можете пользоваться Интернетом в комфортной для вас обстановке.

В пределах Wi-Fi зоны в сеть Интернет могут выходить несколько пользователей с компьютеров, ноутбуков, телефонов и т. д.

Излучение от Wi-Fi устройств в момент передачи данных на два порядка (в 100 раз) меньше, чем у сотового телефона.

Недостатки Wi-Fi

Bluetooth, и др, и даже микроволновые печи, что ухудшает электромагнитную совместимость.

Реальная скорость передачи данных в Wi-Fi сети всегда ниже максимальной скорости, заявляемой производителями Wi-Fi оборудования. Реальная скорость зависит от многих факторов: наличия между устройствами физических преград (мебель, стены), наличия помех от других беспроводных устройств или электронной аппаратуры, расположения устройств относительно друг друга и т. п.

Частотный диапазон и эксплуатационные ограничения в различных странах неодинаковы. Во многих европейских странах разрешены два дополнительных канала, которые запрещены в США; В Японии есть ещё один канал в верхней части диапазона, а другие страны, например Испания, запрещают использование низкочастотных каналов. Более того, некоторые страны, например Россия, требуют регистрации всех сетей Wi-Fi, работающих вне помещений, или требуют регистрации Wi-Fi-оператора.

Как было упомянуто выше - в России точки беспроводного доступа, а также адаптеры Wi-Fi с ЭИИМ, превышающей 100 мВт (20 дБм), подлежат обязательной регистрации.

Стандарт шифрования WEP может быть относительно легко взломан даже при правильной конфигурации (из-за слабой стойкости алгоритма). Новые устройства поддерживают более совершенный протокол шифрования данных

Wi-Fi и телефоны сотовой связи.

Некоторые считают, что Wi-Fi и подобные ему технологии со временем могут заменить сотовые сети, такие как GSM. Препятствиями для такого развития событий в ближайшем будущем являются отсутствие роуминга и возможностей аутентификации, ограниченность частотного диапазона и сильно ограниченный радиус действия Wi-Fi. Более правильным выглядит сравнение Wi-Fi с другими стандартами сотовых сетей.

Тем не менее, Wi-Fi пригоден для использования в среде SOHO. Первые образцы оборудования появились уже в начале 2000-х, однако на рынок они вышли только в 2005 году. Тогда компании представили на рынок VoIP Wi-Fi-телефоны по «разумным» ценам. Когда звонки с помощью VoIP стали очень дешёвыми, а зачастую вообще бесплатными, провайдеры, способные предоставлять услуги VoIP, получили возможность открыть новый рынок - услуг VoIP.

В настоящий момент непосредственное сравнение Wi-Fi и сотовых сетей нецелесообразно. Телефоны, использующие только Wi-Fi, имеют очень ограниченный радиус действия, поэтому развёртывание таких сетей обходится очень дорого. Тем не менее, развёртывание таких сетей может быть наилучшим решением для локального использования, например, в корпоративных сетях.

WiMAX

WiMAX (англ. Worldwide Interoperability for Microwave Access)- телекоммуникационная технология, разработанная с целью предоставления универсальной беспроводной связи на больших расстояниях для широкого спектра устройств (от рабочих станций и портативных компьютеров до мобильных телефонов). Основана на стандарте IEEE 802.16, который также называют Wireless MAN (WiMAX следует считать жаргонным названием, так как это не технология, а название форума, на котором Wireless MAN и был согласован). Максимальная скорость - до 1 Гбит/сек на ячейку.

Область использования

WiMAX подходит для решения следующих задач:

Соединения точек доступа Wi-Fi друг с другом и другими сегментами Интернета.

Обеспечения беспроводного широкополосного доступа как альтернативы

Предоставления высокоскоростных сервисов передачи данных и телекоммуникационных услуг.

Создания точек доступа, не привязанных к географическому положению.

Создания систем удалённого мониторинга (monitoring системы), как это имеет место в системе

WiMAX позволяет осуществлять доступ в Интернет на высоких скоростях, с гораздо большим покрытием, чем у Wi-Fi-сетей. Это позволяет использовать технологию в качестве «магистральных каналов», продолжением которых выступают традиционные DSL- и выделенные линии, а также локальные сети. В результате подобный подход позволяет создавать масштабируемые высокоскоростные сети в рамках городов.

Фиксированный и мобильный вариант WiMAX

Набор преимуществ присущ всему семейству WiMAX, однако его версии существенно отличаются друг от друга. Разработчики стандарта искали оптимальные решения как для фиксированного, так и для мобильного применения, но совместить все требования в рамках одного стандарта не удалось. Хотя ряд базовых требований совпадает, нацеленность технологий на разные рыночные ниши привела к созданию двух отдельных версий стандарта (вернее, их можно считать двумя разными стандартами). Каждая из спецификаций WiMAX определяет свои рабочие диапазоны частот, ширину полосы пропускания, мощность излучения, методы передачи и доступа, способы кодирования и модуляции сигнала, принципы повторного использования радиочастот и прочие показатели.

Основное различие двух технологий состоит в том, что фиксированный WiMAX позволяет обслуживать только «статичных» абонентов, а мобильный ориентирован на работу с пользователями, передвигающимися со скоростью до 150 км/ч. Мобильность означает наличие функций роуминга и «бесшовного» переключения между базовыми станциями при передвижении абонента (как происходит в сетях сотовой связи). В частном случае мобильный WiMAX может применяться и для обслуживания фиксированных пользователей.

Широкополосный доступ

Многие телекоммуникационные компании делают большие ставки на использование WiMAX для предоставления услуг высокоскоростной связи. И тому есть несколько причин.

Во-первых, технологии позволят экономически более эффективно (по сравнению с проводными технологиями) не только предоставлять доступ в сеть новым клходить несколько пользователей с компьютеров, ноутбуков, телефонов и т. д.

Излучение от Wi-Fi устройств в момент передачи данных на два порядка (в 100 раз) меньше, чем у сотового телефона.

Недостатки Wi-Fi

Bluetooth, и др, и даже микроволновые печи, что ухудшает электромагнитную совместимость.

Реальная скорость передачи данных в Wi-Fi сети всегда ниже максимальной скорости, заявляемой производителями Wi-Fi оборудования. Реальная скорость зависит от многих факторов: наличия между устройствами физических преград (мебель, стены), наличия помех от других беспроводных устройств или электронной аппаратуры, расположения устройств относительно друг друга и т. п.

Частотный диапазон и эксплуатационные ограничения в различных странах неодинаковы. Во многих европейских странах разрешены два дополнительных канала, которые запрещены в США; В Японии есть ещё один канал в верхней части диапазона, а другие страны, например Испания, запрещают использование низкочастотных каналов. Более того, некоторые страны, например Россия, требуют регистрации всех сетей Wi-Fi, работающих вне помещений, или требуют регистрации Wi-Fi-оператора.

Как было упомянуто выше - в России точки беспроводного доступа, а также адаптеры Wi-Fi с ЭИИМ, превышающей 100 мВт (20 дБм), подлежат обязательной регистрации.

Стандарт шифрования WEP может быть относительно легко взломан даже при правильной конфигурации (из-за слабой стойкости алгоритма). Новые устройства поддерживают более совершенный протокол шифрования данных

Wi-Fi и телефоны сотовой связи

Некоторые считают, что Wi-Fi и подобные ему технологии со временем могут заменить сотовые сети, такие как GSM. Препятствиями для такого развития событий в ближайшем будущем являются отсутствие роуминга и возможностей аутентификации, ограниченность частотного диапазона и сильно ограниченный радиус действия Wi-Fi. Более правильным выглядит сравнение Wi-Fi с другими стандартами сотовых сетей.

Тем не менее, Wi-Fi пригоден для использования в среде SOHO. Первые образцы оборудования появились уже в начале 2000-х, однако на рынок они вышли только в 2005 году. Тогда компании представили на рынок VoIP Wi-Fi-телефоны по «разумным» ценам. Когда звонки с помощью VoIP стали очень дешёвыми, а зачастую вообще бесплатными, провайдеры, способные предоставлять услуги VoIP, получили возможность открыть новый рынок - услуг VoIP.

В настоящий момент непосредственное сравнение Wi-Fi и сотовых сетей нецелесообразно. Телефоны, использующие только Wi-Fi, имеют очень ограниченный радиус действия, поэтому развёртывание таких сетей обходится очень дорого. Тем не менее, развёртывание таких сетей может быть наилучшим решением для локального использования, например, в корпоративных сетях.

WiMAX

WiMAX (англ. Worldwide Interoperability for Microwave Access)- телекоммуникационная технология, разработанная с целью предоставления универсальной беспроводной связи на больших расстояниях для широкого спектра устройств (от рабочих станций и портативных компьютеров до мобильных телефонов). Основана на стандарте IEEE 802.16, который также называют Wireless MAN (WiMAX следует считать жаргонным названием, так как это не технология, а название форума, на котором Wireless MAN и был согласован). Максимальная скорость - до 1 Гбит/сек на ячейку.

Область использования

WiMAX подходит для решения следующих задач:

Соединения точек доступа Wi-Fi друг с другом и другими сегментами Интернета.

Обеспечения беспроводного широкополосного доступа как альтернативы

Предоставления высокоскоростных сервисов передачи данных и телекоммуникационных услуг.

Создания точек доступа, не привязанных к географическому положению.

Создания систем удалённого мониторинга (monitoring системы), как это имеет место в системе

WiMAX позволяет осуществлять доступ в Интернет на высоких скоростях, с гораздо большим покрытием, чем у Wi-Fi-сетей. Это позволяет использовать технологию в качестве «магистральных каналов», продолжением которых выступают традиционные DSL- и выделенные линии, а также локальные сети. В результате подобный подход позволяет создавать масштабируемые высокоскоростные сети в рамках городов.

Фиксированный и мобильный вариант WiMAX

Набор преимуществ присущ всему семейству WiMAX, однако его версии существенно отличаются друг от друга. Разработчики стандарта искали оптимальные решения как для фиксированного, так и для мобильного применения, но совместить все требования в рамках одного стандарта не удалось. Хотя ряд базовых требований совпадает, нацеленность технологий на разные рыночные ниши привела к созданию двух отдельных версий стандарта (вернее, их можно считать двумя разными стандартами). Каждая из спецификаций WiMAX определяет свои рабочие диапазоны частот, ширину полосы пропускания, мощность излучения, методы передачи и доступа, способы кодирования и модуляции сигнала, принципы повторного использования радиочастот и прочие показатели.

Основное различие двух технологий состоит в том, что фиксированный WiMAX позволяет обслуживать только «статичных» абонентов, а мобильный ориентирован на работу с пользователями, передвигающимися со скоростью до 150 км/ч. Мобильность означает наличие функций роуминга и «бесшовного» переключения между базовыми станциями при передвижении абонента (как происходит в сетях сотовой связи). В частном случае мобильный WiMAX может применяться и для обслуживания фиксированных пользователей.

Широкополосный доступ

Многие телекоммуникационные компании делают большие ставки на использование WiMAX для предоставления услуг высокоскоростной связи. И тому есть несколько причин.

Во-первых, технологии позволят экономически более эффективно (по сравнению с проводными технологиями) не только предоставлять доступ в сеть новым клходить несколько пользователей с компьютеров, ноутбуков, телефонов и т. д.

Излучение от Wi-Fi устройств в момент передачи данных на два порядка (в 100 раз) меньше, чем у сотового телефона.

Недостатки Wi-Fi

Bluetooth, и др, и даже микроволновые печи, что ухудшает электромагнитную совместимость.

Реальная скорость передачи данных в Wi-Fi сети всегда ниже максимальной скорости, заявляемой производителями Wi-Fi оборудования. Реальная скорость зависит от многих факторов: наличия между устройствами физических преград (мебель, стены), наличия помех от других беспроводных устройств или электронной аппаратуры, расположения устройств относительно друг друга и т. п.

Частотный диапазон и эксплуатационные ограничения в различных странах неодинаковы. Во многих европейских странах разрешены два дополнительных канала, которые запрещены в США; В Японии есть ещё один канал в верхней части диапазона, а другие страны, например Испания, запрещают использование низкочастотных каналов. Более того, некоторые страны, например Россия, требуют регистрации всех сетей Wi-Fi, работающих вне помещений, или требуют регистрации Wi-Fi-оператора.

Как было упомянуто выше - в России точки беспроводного доступа, а также адаптеры Wi-Fi с ЭИИМ, превышающей 100 мВт (20 дБм), подлежат обязательной регистрации.

Стандарт шифрования WEP может быть относительно легко взломан даже при правильной конфигурации (из-за слабой стойкости алгоритма). Новые устройства поддерживают более совершенный протокол шифрования данных

Wi-Fi и телефоны сотовой связи

Некоторые считают, что Wi-Fi и подобные ему технологии со временем могут заменить сотовые сети, такие как GSM. Препятствиями для такого развития событий в ближайшем будущем являются отсутствие роуминга и возможностей аутентификации, ограниченность частотного диапазона и сильно ограниченный радиус действия Wi-Fi. Более правильным выглядит сравнение Wi-Fi с другими стандартами сотовых сетей.

Тем не менее, Wi-Fi пригоден для использования в среде SOHO. Первые образцы оборудования появились уже в начале 2000-х, однако на рынок они вышли только в 2005 году. Тогда компании представили на рынок VoIP Wi-Fi-телефоны по «разумным» ценам. Когда звонки с помощью VoIP стали очень дешёвыми, а зачастую вообще бесплатными, провайдеры, способные предоставлять услуги VoIP, получили возможность открыть новый рынок - услуг VoIP.

В настоящий момент непосредственное сравнение Wi-Fi и сотовых сетей нецелесообразно. Телефоны, использующие только Wi-Fi, имеют очень ограниченный радиус действия, поэтому развёртывание таких сетей обходится очень дорого. Тем не менее, развёртывание таких сетей может быть наилучшим решением для локального использования, например, в корпоративных сетях.

WiMAX

WiMAX (англ. Worldwide Interoperability for Microwave Access)- телекоммуникационная технология, разработанная с целью предоставления универсальной беспроводной связи на больших расстояниях для широкого спектра устройств (от рабочих станций и портативных компьютеров до мобильных телефонов). Основана на стандарте IEEE 802.16, который также называют Wireless MAN (WiMAX следует считать жаргонным названием, так как это не технология, а название форума, на котором Wireless MAN и был согласован). Максимальная скорость - до 1 Гбит/сек на ячейку.

Область использования

WiMAX подходит для решения следующих задач:

Соединения точек доступа Wi-Fi друг с другом и другими сегментами Интернета.

Обеспечения беспроводного широкополосного доступа как альтернативы

Предоставления высокоскоростных сервисов передачи данных и телекоммуникационных услуг.

Создания точек доступа, не привязанных к географическому положению.

Создания систем удалённого мониторинга (monitoring системы), как это имеет место в системе

WiMAX позволяет осуществлять доступ в Интернет на высоких скоростях, с гораздо большим покрытием, чем у Wi-Fi-сетей. Это позволяет использовать технологию в качестве «магистральных каналов», продолжением которых выступают традиционные DSL- и выделенные линии, а также локальные сети. В результате подобный подход позволяет создавать масштабируемые высокоскоростные сети в рамках городов.

Фиксированный и мобильный вариант WiMAX

Набор преимуществ присущ всему семейству WiMAX, однако его версии существенно отличаются друг от друга. Разработчики стандарта искали оптимальные решения как для фиксированного, так и для мобильного применения, но совместить все требования в рамках одного стандарта не удалось. Хотя ряд базовых требований совпадает, нацеленность технологий на разные рыночные ниши привела к созданию двух отдельных версий стандарта (вернее, их можно считать двумя разными стандартами). Каждая из спецификаций WiMAX определяет свои рабочие диапазоны частот, ширину полосы пропускания, мощность излучения, методы передачи и доступа, способы кодирования и модуляции сигнала, принципы повторного использования радиочастот и прочие показатели.

Основное различие двух технологий состоит в том, что фиксированный WiMAX позволяет обслуживать только «статичных» абонентов, а мобильный ориентирован на работу с пользователями, передвигающимися со скоростью до 150 км/ч. Мобильность означает наличие функций роуминга и «бесшовного» переключения между базовыми станциями при передвижении абонента (как происходит в сетях сотовой связи). В частном случае мобильный WiMAX может применяться и для обслуживания фиксированных пользователей.

Широкополосный доступ

Многие телекоммуникационные компании делают большие ставки на использование WiMAX для предоставления услуг высокоскоростной связи. И тому есть несколько причин.

Во-первых, технологии позволят экономически более эффективно (по сравнению с проводными технологиями) не только предоставлять доступ в сеть новым клходить несколько пользователей с компьютеров, ноутбуков, телефонов и т. д.

Излучение от Wi-Fi устройств в момент передачи данных на два порядка (в 100 раз) меньше, чем у сотового телефона.

Недостатки Wi-Fi

Bluetooth, и др, и даже микроволновые печи, что ухудшает электромагнитную совместимость.

Реальная скорость передачи данных в Wi-Fi сети всегда ниже максимальной скорости, заявляемой производителями Wi-Fi оборудования. Реальная скорость зависит от многих факторов: наличия между устройствами физических преград (мебель, стены), наличия помех от других беспроводных устройств или электронной аппаратуры, расположения устройств относительно друг друга и т. п.

Частотный диапазон и эксплуатационные ограничения в различных странах неодинаковы. Во многих европейских странах разрешены два дополнительных канала, которые запрещены в США; В Японии есть ещё один канал в верхней части диапазона, а другие страны, например Испания, запрещают использование низкочастотных каналов. Более того, некоторые страны, например Россия, требуют регистрации всех сетей Wi-Fi, работающих вне помещений, или требуют регистрации Wi-Fi-оператора.

Как было упомянуто выше - в России точки беспроводного доступа, а также адаптеры Wi-Fi с ЭИИМ, превышающей 100 мВт (20 дБм), подлежат обязательной регистрации.

Стандарт шифрования WEP может быть относительно легко взломан даже при правильной конфигурации (из-за слабой стойкости алгоритма). Новые устройства поддерживают более совершенный протокол шифрования данных

Wi-Fi и телефоны сотовой связи

Некоторые считают, что Wi-Fi и подобные ему технологии со временем могут заменить сотовые сети, такие как GSM. Препятствиями для такого развития событий в ближайшем будущем являются отсутствие роуминга и возможностей аутентификации, ограниченность частотного диапазона и сильно ограниченный радиус действия Wi-Fi. Более правильным выглядит сравнение Wi-Fi с другими стандартами сотовых сетей.

Тем не менее, Wi-Fi пригоден для использования в среде SOHO. Первые образцы оборудования появились уже в начале 2000-х, однако на рынок они вышли только в 2005 году. Тогда компании представили на рынок VoIP Wi-Fi-телефоны по «разумным» ценам. Когда звонки с помощью VoIP стали очень дешёвыми, а зачастую вообще бесплатными, провайдеры, способные предоставлять услуги VoIP, получили возможность открыть новый рынок - услуг VoIP.

В настоящий момент непосредственное сравнение Wi-Fi и сотовых сетей нецелесообразно. Телефоны, использующие только Wi-Fi, имеют очень ограниченный радиус действия, поэтому развёртывание таких сетей обходится очень дорого. Тем не менее, развёртывание таких сетей может быть наилучшим решением для локального использования, например, в корпоративных сетях.

WiMAX

WiMAX (англ. Worldwide Interoperability for Microwave Access)- телекоммуникационная технология, разработанная с целью предоставления универсальной беспроводной связи на больших расстояниях для широкого спектра устройств (от рабочих станций и портативных компьютеров до мобильных телефонов). Основана на стандарте IEEE 802.16, который также называют Wireless MAN (WiMAX следует считать жаргонным названием, так как это не технология, а название форума, на котором Wireless MAN и был согласован). Максимальная скорость - до 1 Гбит/сек на ячейку.

Область использования

WiMAX подходит для решения следующих задач:

Соединения точек доступа Wi-Fi друг с другом и другими сегментами Интернета.

Обеспечения беспроводного широкополосного доступа как альтернативы

Предоставления высокоскоростных сервисов передачи данных и телекоммуникационных услуг.

Создания точек доступа, не привязанных к географическому положению.

Создания систем удалённого мониторинга (monitoring системы), как это имеет место в системе

WiMAX позволяет осуществлять доступ в Интернет на высоких скоростях, с гораздо большим покрытием, чем у Wi-Fi-сетей. Это позволяет использовать технологию в качестве «магистральных каналов», продолжением которых выступают традиционные DSL- и выделенные линии, а также локальные сети. В результате подобный подход позволяет создавать масштабируемые высокоскоростные сети в рамках городов.

Фиксированный и мобильный вариант WiMAX

Набор преимуществ присущ всему семейству WiMAX, однако его версии существенно отличаются друг от друга. Разработчики стандарта искали оптимальные решения как для фиксированного, так и для мобильного применения, но совместить все требования в рамках одного стандарта не удалось. Хотя ряд базовых требований совпадает, нацеленность технологий на разные рыночные ниши привела к созданию двух отдельных версий стандарта (вернее, их можно считать двумя разными стандартами). Каждая из спецификаций WiMAX определяет свои рабочие диапазоны частот, ширину полосы пропускания, мощность излучения, методы передачи и доступа, способы кодирования и модуляции сигнала, принципы повторного использования радиочастот и прочие показатели.

Основное различие двух технологий состоит в том, что фиксированный WiMAX позволяет обслуживать только «статичных» абонентов, а мобильный ориентирован на работу с пользователями, передвигающимися со скоростью до 150 км/ч. Мобильность означает наличие функций роуминга и «бесшовного» переключения между базовыми станциями при передвижении абонента (как происходит в сетях сотовой связи). В частном случае мобильный WiMAX может применяться и для обслуживания фиксированных пользователей.

Широкополосный доступ

Многие телекоммуникационные компании делают большие ставки на использование WiMAX для предоставления услуг высокоскоростной связи. И тому есть несколько причин.

Во-первых, технологии позволят экономически более эффективно (по сравнению с проводными технологиями) не только предоставлять доступ в сеть новым клиентам, но и расширять спектр услуг и охватывать новые труднодоступные территории.

Во-вторых, беспроводные технологии многим более просты в использовании, чем традиционные проводные каналы. WiMAX и Wi-Fi сети просты в развёртывании и по мере необходимости легко масштабируемы. Этот фактор оказывается очень полезным, когда необходимо развернуть большую сеть в кратчайшие сроки. К примеру, WiMAX был использован для того чтобы предоставить доступ в Сеть выжившим после цунами, произошедшего в декабре 2004 года в Индонезии (Aceh). Вся коммуникационная инфраструктура области была выведена из строя и требовалось оперативное восстановление услуг связи для всего региона.

В сумме все эти преимущества позволят снизить цены на предоставление услуг высокоскоростного доступа в Интернет как для бизнес структур, так и для частных лиц.

Wi-Fi это система более короткого действия, обычно покрывающая десятки метров, которая использует нелицензированные диапазоны частот для обеспечения доступа к сети. Обычно Wi-Fi используется пользователями для доступа к их собственной локальной сети, которая может быть и не подключена к Интернету. Если WiMAX можно сравнить с мобильной связью, то Wi-Fi скорее похож на стационарный беспроводной телефон.


  1. Контрольные вопросы

  1. Что такое локальные сети?

  2. Какие способы соединения устройств существуют?

  3. Плюсы и минусы топологии «звезда»

  4. Плюсы и минусы топологии «шина»

  5. Плюсы и минусы топологии «кольцо»

  6. Виды беспроводной связи

  7. В чем их отличие?

Тема 2.3. «Управление процессами. Представление об автоматических и автоматизированных системах»

Лекция №7. Управление процессами. АСУ

План

  1. Управление.

  2. Автоматизированная система управления

  3. Функции АСУ

  4. Контрольные вопросы


  1. Управление.

Управление - важнейшая функция, без которой немыслима целенаправленная деятельность любой социально-экономической, организационно-производственной системы (предприятия, организации, территории).

Систему, реализующую функции управления, называют системой управления. Важнейшими функциями, реализуемыми этой системой, являются прогнозирование, планирование, учет, анализ, +контроль и регулирование.

Информационный процесс - процесс получения, создания, сбора, обработки, накопления, хранения, поиска, распространения и использования информации.

Информационные системы - системы, в которых происходят информационные процессы.

Если поставляемая информация извлекается из какого-либо процесса (объекта), а выходная применяется для целенаправленного изменения того же самого объекта, то такую информационную систему называют системой управления.

Виды систем управления: ручные, автоматизированные (человеко-машинные), автоматические (технические) .

  1. Автоматизированные системы управления.

Автоматизированная система управления или АСУ - комплекс аппаратных и программных средств, предназначенный для управления различными процессами в рамках технологического процесса, производства, предприятия. АСУ применяются в различных отраслях промышленности, энергетике, транспорте и т. п. Термин автоматизированная, в отличие от термина автоматическая подчёркивает сохранение за человеком-оператором некоторых функций, либо наиболее общего, целеполагающего характера, либо не поддающихся автоматизации.

Автоматизированная система управления технологическим процессом (АСУ ТП) - это комплекс программных и технических средств, предназначенный для автоматизации управления технологическим оборудованием на предприятиях.

Под АСУ ТП обычно понимается комплексное решение, обеспечивающее автоматизацию основных технологических операций на производстве в целом или каком-то его участке, выпускающем относительно завершенный продукт. Здесь важно сделать акцент на слове «автоматизированная». Под этим подразумевается, что система управления отнюдь не полностью автономна (самостоятельна), и требуется участие человека (оператора) для реализации определенных задач. Напротив, системы автоматического управления (САУ) предназначены для работы без какого-либо контроля со стороны человека и полностью автономны. Очень важно понимать эту принципиальную разницу между АСУ и САУ.

Составными частями АСУТП могут быть отдельные системы автоматического управления (САУ) и автоматизированные устройства, связанные в единый комплекс. Как правило АСУТП имеет единую систему операторского управления технологическим процессом в виде одного или нескольких пультов управления, средства обработки и архивирования информации о ходе процесса, типовые элементы автоматики: датчики, контроллеры, исполнительные устройства. Для информационной связи всех подсистем используются промышленные сети.

  1. Функции АСУ.

Функции, выполняемые АСУ ТП.

АСУ ТП предназначается для:

  • повышение оперативности управления, эффективности и надежности работы автоматизированной системы;

  • снижение косвенных затрат на эксплуатацию удаленных объектов;

  • своевременное координирование действий подразделений предприятия;

  • обеспечение руководителей и ИТР персонала информацией, необходимой для принятия эффективных решений управления и планирования;

  • обеспечение оптимальных решений работы технологического оборудования;

  • полное протоколирование всех штатных и нештатных ситуаций, а также действий операторов АРМ.

АСУ ТП обеспечивает выполнение всех функций современных автоматизированных систем: информационно-измерительные функции; информационно-расчетные функции; функции технологических защит и блокировок; функции автоматического регулирования; функции дистанционного управления; функции программно-логического управления; функции проверок и диагностики оборудования АСУ ТП.

Классификация систем управления по информационным функциям

1. Автоматические системы децентрализованного контроля и управления, в которых наблюдение за ходом технологического процесса и выполнение отдельных операций управления осуществляется с местного щита управления.

Технологический процесс производства какого-либо продукта, рассматриваемый в качестве объекта управления, в соответствии с направлением материальных и энергетических потоков разбит на отдельные участки, сформированные в цеха или отделения. При разработке систем децентрализованного контроля и управления процессом для каждого такого участка предусмотрена обособленная система управления, не связанная функционально с системами управления другими цехами и отделениями.

2. Системы централизованного контроля с передачей информации о процессе в центральный пункт управления (ЦПУ). При разработке этого типа систем управления вся информация о технологическом процессе от начала производства до получения конечной продукции направляется в единую систему централизованного контроля и управления, где она обрабатывается, после чего формируются управляющие воздействия.

3. Автоматизированные системы управления технологическим процессом (АСУ ТП), которые в зависимости от выполняемых ими информационных функций могут решать задачи вычисления технико-экономических показателей производства, задачи сбора, первичной обработки и передачи информации, задачи анализа, обобщения информации о процессе и прогнозирования протекания технологического процесса.

АСУ - человеко-машинная система, обеспечивающая автоматизированный сбор и обработку информации, необходимой для оптимизации управления в различных сферах человеческой деятельности.

АСУ ТП - АСУ для выработки и реализации управляющих воздействий на технологический объект управления в соответствии с выбранным критерием управления.

К внешним функциям АСУ ТП относятся функции контроля за текущим состоянием объекта и функции управления, которые включают в себя определение управляющих воздействий и их реализацию.

Внутренние функции АСУ ТП охватывают:

- организацию связи с другими системами управления, в частности с АСУ предприятия и с другими АСУ ТП;

- контроль за правильностью функционирования системы;

- организацию обслуживания очередей заявок на решение задач управления на ЦВМ;

- распределение загрузки отдельных узлов и блоков системы управления;

- слежение за временем и отсчет временных интервалов.

Каждая АСУ ТП реализует только те функции, которые актуальны для конкретного объекта управления.

  1. Контрольные вопросы

  1. Что такое управление?

  2. что такое система управления?

  3. какие виды систем управления существуют?

  4. что такое АСУ

  5. Какие функции выполняет АСУ?

Раздел III «Основные характеристики компьютеров. Архитектура ПК. Виды программного обеспечения компьютеров».

Тема 3.1. «Основные характеристики компьютеров. Архитектура ПК. Виды программного обеспечения компьютеров».

Лекция №8. Основные характеристики компьютеров. Архитектура ПК. Виды программного обеспечения компьютеров.

План

  1. Аппаратные средства

  2. Схема фон Неймана

  3. Внешняя память

  4. Контрольные вопросы


  1. Аппаратные средства

Аппаратными средствами (Hard ware) называют совокупность всех устройств, которые составляют компьютер или могут к нему добавляться по мере необходимости.

К важнейшим аппаратным средствам относятся системный блок и периферийные устройства.

По способу расположения устройств относительно центрального процессорного устройства (ЦПУ - Central Processing Unit, CPU) различают внутренние и внешние устройства. Внешними, как правило, являются большинство устройств ввода-вывода данных (их также называют периферийными устройствами) и некоторые устройства, предназначенные для длительного хранения данных.

2. Схема фон Неймана

Выдающийся математик Джон фон Нейман в середине 20 века, анализируя работу первых ЭВМ, пришел к выводу о необходимости хранения выполняющейся программы и обрабатываемых по этой программе данных внутри машины, в ее электронных схемах, а не вне ее - на перфокартах, перфолентах или разъемах со штекерами.

Джон фон Нейман предложил новые принципы создания компьютеров, состоящие в следующем:

Принцип двоичного кодирования: вся информация, поступающая в ЭВМ, кодируется с помощью двоичных сигналов. Принцип программного управления: программа состоит из набора команд, которые выполняются процессором автоматически друг за другом в определенной последовательности. Принцип однородности памяти: программы и данные хранятся в одной и той же памяти, поэтому ЭВМ не различает, что хранится в данной ячейке памяти - число, текст или команда. Над командами можно выполнять такие же действия, как и над данными. Принцип адресности: структурно основная память состоит из пронумерованных ячеек; процессору в произвольный момент времени доступна любая ячейка.

Согласно фон Нейману, ЭВМ состоит из следующих основных блоков:

- устройство ввода/вывода информации;

- память компьютера;

- процессор, состоящий из устройства управления (УУ), через которое идет поток команд и данных, и арифметико-логического устройства (АЛУ), производящего арифметические и логические операции.

В общих чертах идеи фон Неймана и созданная им архитектура ЭВМ актуальны до сегодняшнего времени

Архитектура ЭВМ.

Под архитектурой ЭВМ понимается совокупность сведений об основных устройствах компьютера и их назначении, о способах представления программ и данных в машине, об особенностях ее организации и функционирования.

Электронно-вычислительная машина (ЭВМ), или компьютер, - это электронное устройство, используемое для автоматизации процессов приема, хранения, обработки и передачи информации, которые осуществляются по заранее разработанным человеком программам.

В состав любого современного компьютера входят:

- память - группа устройств, которые обеспечивают хранение данных и программ;

- процессор - одно или несколько устройств, которые обеспечивают задаваемую программой обработку данных;

- устройства ввода-вывода - группа устройств, которые обеспечивают обмен, то есть прием и передачу данных между пользователем и машиной или между двумя или более машинами.

Различные устройства компьютера подсоединяются друг к другу с помощью стандартизированных и унифицированных (то есть единообразных) аппаратных средств - кабелей, разъемов и т. д. При этом устройства обмениваются друг с другом информацией и управляющими сигналами, которые также приводятся к некоторым стандартным формам. Совокупность этих стандартных средств и форм образует конкретный интерфейс (interface - взаимный вид) того или иного устройства или компьютера в целом.

Интерфейс - совокупность унифицированных стандартных соглашений, аппаратных и программных средств, методов и правил взаимодействия устройств или программ.

Основные устройства ЭВМ.

Персональный компьютер - универсальная техническая система. Его конфигурацию (состав оборудования) можно гибко изменять по мере необходимости. Тем не менее, существует понятие базовой конфигурации, которую считают типовой. В таком комплекте компьютер обычно поставляется. Понятие базовой конфигурации может меняться. В настоящее время в базовой конфигурации рассматривают четыре устройства:

· системный блок;

· монитор;

· клавиатура;

· мышь.

Системный блок

Системный блок представляет собой основной узел, внутри которого установлены наиболее важные компоненты. Устройства, находящиеся внутри системного блока называют внутренними, а устройства, подключаемые к нему снаружи, называют внешними. Внешние дополнительные устройства, предназначенные для ввода, вывода и длительного хранения данных, также называют периферийными.

Системный блок содержит все основные элементы ЭВМ - материнская плата, центральный процессор, оперативная память, системная шина, различные дисковые устройства, блок питания и многие другие. На лицевой панели системного блока размещаются: кнопка включения электропитания (Power - мощность), кнопка перезапуска (Reset - переустановка), ряд сигнальных лампочек и панели управления различных дисковых устройств. На задней панели находятся стандартные разъемы для крепления всевозможных дополнительных устройств и устройств ввода-вывода.

Основные компоненты системного блока

Блок питания. Материнскую плату. ВЗУ.

Блок питания

Преобразовывает переменный ток сетевого напряжения в постоянный ток низкого напряжения. В корпусе блока питания имеется встроенный вентилятор для охлаждения внутренних электрических схем. Часто в блоки питания входит розетка для питания монитора.

Материнская плата (motherboard)

Плата - это обычно прямоугольная пластина, используемая для выполнения монтажа необходимых электрических цепей, а также имеющая специальные разъемы для крепления шины и микросхем памяти, процессора и т. д.

Основная, самая большая по габаритам плата, располагающаяся внутри корпуса, называется материнской. На этой плате монтируется большинство остальных компонент ЭВМ.

1. Центральный процессор (CPU - Central Processor Unit) с охлаждающим вентилятором (cooler).

Процессор или микропроцессор - основное устройство компьютера, которое обеспечивает задаваемую программой обработку данных.

В общем случае процессор состоит из следующих компонентов:

- Арифметико-логическое устройство;

- Математический сопроцессор для обработки чисел с «плавающей» точкой;

- Шины данных и адреса;

- Счетчики команд;

- Сверхбыстрая кэш-память малого объема.

Основные функции: действия по обработке данных и управление последовательностью выполнения таких действий.

Для ускорения выполнения машинных команд в процессоре предусмотрена регистровая память. Регистр - это устройство для кратковременного хранения информации в процессе ее обработки.

Характеристики процессора:

- Тактовая частота - количество тактовых импульсов, вырабатываемых тактовым генератором в секунду. Тактовые импульсы поступаю на все остальные устройства компьютера и т. о. синхронизируют работу.

- Длина машинного слова - количество байтов в машинном слове. Машинное слово - наибольшая группа байтов, которая может быть обработана процессором за один машинный такт.

2. Оперативная память (RAM - Random Access Memory - память с произвольным доступом или прямоадресуемая память) или оперативное запоминающее устройство (ОЗУ).

Оперативная память - устройство компьютера, предназначенное для хранения выполняющихся в текущий момент времени программ, а также данных, необходимых для их выполнения.

Отличительные особенности - энергозависимость (при отключении электропитания вся информация, которая хранилась в оперативной памяти, безвозвратно теряется) и относительно высокая стоимость.

Для современных персональных компьютеров считается нормальным объем памяти порядка 128-256 Мб. Если же работа связана с обработкой графики или звука, то лучше иметь объем памяти 512-1024 Мб.

3. Набор микросхем (chipset) отвечает за работу материнской платы. Обычно чипсет содержит в себе контроллеры прямого доступа к памяти, прерываний, таймеры, систему управления памятью и шиной. Чипсет - главная деталь материнской платы. От него зависят такие характеристики платы, как типы поддерживаемых процессоров, внешних устройств, модулей памяти (и возможности их сочетания) и системной шины. Иногда чипсет включает в себя интегрированные аудио - и видеокарты.

4. Системная шина, просто шина или магистраль - комплекс, состоящий из пучка проводов и электронных схем, обеспечивающих правильную передачу информации внутри компьютера. Главными характеристиками шины являются ее разрядность - число проводов в шине и частота работы.

5. Часто на материнской плате монтируется кэш-память (cache - запас, тайный склад) - высокоскоростная память, в которую копируются данные из оперативной памяти с целью оптимизации работы процессора с большими объемами данных. Обеспечивает повышение скорости вычислений.

6. Постоянная память, ПЗУ (постоянное запоминающее устройство), или ROM (Read Only Memory - память только для чтения). Запись информации в ПЗУ осуществляется только один раз на заводе-изготовителе. И в дальнейшем из этой памяти возможно только чтение.

При отключении электропитания данные, записанные в ПЗУ, сохраняются. Постоянная память используется для хранения наиболее важных и часто используемых служебных программ, которые осуществляют проверку работы отдельных устройств компьютера (тестирование), а также выполняют постоянно используемые операции по обмену данными между клавиатурой, монитором и памятью компьютера. Этот комплекс программ образует BIOS (Basic Input-Output System) - базовая система ввода-вывода, содержащая основное программное обеспечение платы и программу самотестирования платы. BIOS получает управление при включении системной платы, выполняет самотестирование ее основных устройств, затем загружает операционную систему.

7. Энергонезависимая память на основе CMOS (Complementary Metal-Oxide-Semiconductor - структура типа комплементарный металл-оксид-полупроводник), а также аккумулятор для ее питания. Эта память содержит основные параметры настройки материнской платы, в частности тип и число накопителей на жестких дисках (винчестерах), наличие-отсутствие дисководов, пароль на загрузку компьютера.

8. Платы расширения, например звуковые или видеокарты.

9. Разъемы для подключения винчестеров, а также дисководов для флоппи-дисков.

10. Внешние порты, к которым подключаются устройства ввода-вывода (клавиатура, мышь и т. п.).

3. Внешняя память

Внешняя память (ВЗУ - внешнее запоминающее устройство)- группа устройств, которые предназначены для долговременного хранения больших массивов информации - программ и данных.

Перенос программы из внешней памяти в оперативную называется загрузкой программы, а инициирование (начало) ее выполнение называют запуском или передачей управления этой программе. Энергонезависима.

В настоящее время в качестве внешней памяти в основном используются гибкие магнитные, жесткие магнитные, оптически и магнитооптические диски.

Гибкий магнитный диск (ГМД), накопитель на гибких магнитных дисках (НГМД), флоппи-диск (floppy disk - свободно висящий диск) или просто дискета представляет собой гибкую лавсановую пластинку диаметром 3,5 дюйма, что примерно равно 9 см. Обычно такие диски называют трехдюймовыми. Пластинка покрыта с одной или двух сторон специальным веществом, хорошо сохраняющим состояние намагниченности. Объем трехдюймовой дискеты равен 1,44 Мбайт.

Для работы с дискетами в компьютере предусмотрены устройства, которые называются дисководами гибких магнитных дисков или FDD (floppy disk drive - привод флоппи-дисков).

Хранение информации на дисках. На рабочие поверхности дискет наносятся концентрические дорожки. Все дорожки пронумерованы, начиная с нуля. Каждая дорожка дискеты состоит из некоторого количества участков - секторов. В стандартном случае сектор имеет объем 512 байтов. Чтение и запись информации осуществляется целым сектором. Сектора дорожки нумеруются с единицы. Первый сектор, расположенный на нулевой дорожке нулевой поверхности любого диска, принято называть начальным, стартовым или boot-сектором.

Оптические (лазерные) диски, CD (Compact Disk компакт диски) или CD-ROM (Compact Disk Read Only Memory - память только для чтения на компакт дисках). Диаметр 5,25 дюйма (133 мм). Информация записывается в виде углублений и пиков, расположенных внутри концентрических дорожек. Этот рельеф наносится на диск при его изготовлении механическим путем. Отсюда недостаток - невозможность записывать на них новую информацию. Считывание информации происходит с помощью лазерного луча. Емкость 600-800 Мбайт. Дисковод для оптических дисков называют лазерным проигрывателем или так же - CD-ROM.

CD-R (Compact Disk Recordable - записываемый компакт-диск). На диски этого типа можно записать информацию, но только один раз. Относятся к магнитооптическим дискам, т. к. запись информации осуществляется магнитным способом, а считывание - оптическим. Для использования этой технологии требуются специальные диски и дисководы.

CD-RW (Compact Disk ReWriteable - перезаписываемые компакт диски) также относятся к магнитооптическим устройствам.

DVD (Digital Versatile Disk - цифровой многосторонний диск). Объем диска 17 Гбайт.

Кроме сменных дисковых устройств в состав персональных компьютеров включается постоянный, несъемный диск. Обычно его называют жестким магнитным диском - ЖДМ, HDD (Hard Disk Drive - привод жесткого диска) или винчестерским (Winchester - разновидность винтовки, двустволка) диском. Является пакетом дисков, который состоит из нескольких (2-10) жестких металлических пластин. Вся группа дисков размещена в герметичном корпусе, из которого откачивается воздух. Такая конструкция позволяет значительно увеличить плотность записи информации и увеличить объем диска. Объем от сотен мегабайт до нескольких сотен гигабайт. Чтение и запись происходит при помощи головок чтения-записи. Рабочие поверхности жесткого диска состоя из дорожек и секторов. Для повышения скорости выполнения операций чтения и записи на жестких дисках несколько подряд расположенных секторов одной и той же дорожки объединяются в группы, которые называются кластерами (cluster - группа). Кластер состоит из целого числа секторов. Обмен информацией осуществляется отдельными кластерами. Каждое из дисковых устройств, включенных в комплект персонального компьютера, имеет свое собственное обозначение, которое состоит из одной буквы английского алфавита и двоеточия. Жесткий дик всегда принято называть С:.

Монитор.

Одним из важнейших устройств, применяющихся для вывода информации, является дисплей (display - показ) или монитор (monitor - устройство для слежения, контроля). На экран дисплея выводятся вводимые с клавиатуры данные, результаты из обработки, а также всевозможная служебная информация.

Дисплеи бывают монохромные и цветные.

По принципу действия основными на сегодняшний день являются мониторы с электронно-лучевой трубкой (ЭЛТ), и жидкокристаллические (ЖК) или LCD-дисплеи (Liquid-Crystal Display), плазменные. ЖК-дисплеи отличаются очень хорошей цветопередачей, малой толщиной, плоским экраном. Плазменные мониторы обладают высоким качеством формируемого изображения и значительными размерами (до 1 м по диагонали при толщине 10 см).

Размер экрана измеряется по диагонали в дюймах (обычно 15, 17, 19, 21).

Важной характеристикой дисплеев является разрешающая способность экрана, определяющая степень четкости изображения. Разрешающая способность зависит от количества строк на весь экран и количества пикселей в строке.

Качество изображения определяется так же зернистостью экрана. Зернистость определяется как расстояние между двумя соседними пикселями.

Следующая характеристика дисплеев - частота регенерации (обновления), или частота кадров, которая показывает, сколько раз в секунду обновляется изображение на экране.

Для создания изображения на экране дисплея необходим еще один компонент, который называют видеоплатой, видеокартой или видеоадаптером. Видеоадаптер вместе с монитором образуют видеоподсистему компьютера.

Адаптером называется устройство, служащее для сопряжения, соединения между собой устройств с разными способами представления информации.

Контроллер - устройство, которое по своим функциям похоже на адаптер, однако служит не только для передачи сигналов, ни и берет на себя часть действий по управлению устройством.

Именно адаптер определяет разрешающую способность монитора и количество передаваемых цветовых оттенков.

Клавиатура.

Для ввода информации в компьютер, а также для управления его работой используется клавиатура (keyboard). Заметим, что клавиатуру вместе с дисплеем (а иногда и только клавиатуру) называют консолью.

Внешне клавиатура представляет собой матрицу клавиш различного размера. Общее их количество колеблется от 100 до 110.

Клавиатура может работать в одном из нескольких режимов - регистров. Различают режимы:

- ввода прописных (заглавных, больших)/строчных (маленьких) букв;

- ввода русских/латинских букв;

- вставки/замены;

- цифрового ввода/управления из цифровой клавиатуры.

Все клавиши клавиатуры можно разделить на четыре группы: алфавитно-цифровые, цифровые, функциональные и управляющие.

Клавиши алфавитно-цифровой группы используются для ввода первичной текстовой информации, занимают левый и центральный участки клавиатуры. На каждой клавише этой группы изображено несколько символов. Нажатие такой клавиши приводит к выводу одного из этих символов. Какой именно символ при этом будет выведен - определяется режимом работы клавиатуры.

Цифровая группа находится на правом участке клавиатуры. Клавиши этой группы удобно использовать для ввода больших массивов числовой информации. Кроме того, в режиме управления из цифровой группы эти клавиши дублируют некоторые управляющие клавиши.

Функциональные клавиши F1, F2, …, F11, F12 занимают самый верхний ряд клавиатуры. Значение каждой из них определяется выполняющейся в момент нажатия клавиши программой и, как правило, связывается с выполнением некоторой последовательности действий. Например, во многих программах нажатие клавиши F1 приводит к выдаче оперативной подсказки, то есть справки о ситуации, сложившейся на данный момент работы программы, и возможных дальнейших действиях.

Последнюю, четвертую группу образуют клавиши управления. Они обычно имеют другой цвет и размещены по периметру алфавитно-цифровой группы, а также между алфавитно-цифровой и цифровой группами.

Текстовый курсор - значок, отмечающий позицию вывода на экран монитора очередного символа текста.

Сочетание клавиш или клавиатурная комбинация - одновременное нажатие двух или более клавиш клавиатуры.

Применение и смысл сочетания клавиш определяется выполняющейся программой.

Esc (escape - уходить, избавляться) - отказ. Чаще всего используется для отмены каких-либо заданных ранее действий.

Tab (tabulation - составление таблиц) - табуляция. Используется при вводе данных в различного рода таблицы. Нажатие клавиши Tab приводит к перемещению курсора в первую позицию следующей графы. Использование этой клавиши позволяет выравнивать все графы таблицы по левому краю.

Caps Lock (capital - прописная буква; lock - замок) - фиксация регистра. Служит для переключения клавиатуры между верхним и нижним регистрами, то есть между режимами ввода прописных и строчных букв. Для индикации текущего режима клавиатуры в верхнем ряду справа имеются три лампочки Num Lock. Caps Lock, Scroll Lock, сигнализирующие об установленном режиме работы клавиатуры.

Shift (shift - изменение) - переключение регистра. Основное назначение клавиш Shift состоит в кратковременном переключении между верхним и нижним регистрами. Кроме переключения между регистрами клавиша Shift часто используется в так называемых сочетаниях клавиш, или клавиатурных комбинациях, для изменения основного значения другой клавиши клавиатуры.

Ctrl (control - руководство) - управление. Клавиши используются в сочетаниях клавиш для изменения основного значения других клавиш клавиатуры.

Alt (alternate - запасной, дополнительный) - дополнение. Используются в сочетаниях клавиш для изменения основного значения других клавиш клавиатуры.

Клавиши с названием «Windows» служат для вызова так называемого основного меню.

Клавиша «Контекст» служит для вызова так называемого динамического меню. На ней изображен знак меню.

Spacebar (space - пространство, интервал; bar - полоса) - пробел. Используется для включения в текст промежутка между словами - пробела.

Enter (enter - начинать, приступать) - пуск. Как правило, нажатие этой клавиши является признаком завершения ввода различного рода команд компьютеру и инициирует начало выполнения запрошенных в команде действий. В цифровой группе клавиш имеется дублирующая клавиша Enter.

Backspace (back - назад; space - интервал) - возврат на шаг. Служит для уничтожения, стирания символа, находящегося слева от текстового курсора. При этом происходит смещение курсора на одну позицию назад, на место стертого символа.

Insert (insert - вставка) - вставка/замена. Используется для переключения между режимами вставки и замены.

Delete (delete - вычеркивать, стирать) - удаление. Используется для стирания символа, на который указывает курсор (обычно расположенный справа от курсора).

Home (home - дом) - переход в начало строки.

End (end - конец) - переход в конец строки.

Page Up (page - страница; up - выше) - переход в начало страницы.

Группа строк текста, занимающая весь экран целиком, называется экранной страницей.

Page Down (page - страница; down - ниже) - в конец страницы.

Клавиши управления текстовым курсором (клавиши направлений) - клавиши с изображением стрелок ←, →, ↓, ↑. Клавиши управления курсором используются для перемещения курсора в направлении, соответствующем стрелке.

Print Screen (print - печать; screen - экран) - печать экрана. Используется для вывода содержимого экрана монитора на печать, то есть для получения бумажной копии находящегося на экране изображения, а также для так называемого «фотографирования» экрана, при котором текущее изображение, сформированное на экране монитора, сохраняется в памяти компьютера.

Scroll Lock (scroll - свиток; lock - замок) - блокировка прокрутки. Разрешает или запрещает перемещение экрана при нажатии клавиш управления курсором.

Pause (pause - перерыв; остановка) - пауза. Используется для временного прекращения выполнения какой либо программы.

Num Lock (number - число; lock - замок) - блокировка режима цифрового ввода. Клавиши цифровой группы могут использоваться в двух режимах - режиме цифрового ввода и режиме управления.

Ctrl + Shift (или Alt + Shift) - смена регистра ввода русских/латинских букв.

Манипулятор мышь

Это очень простое и удобное устройство ввода, используется для управления работой программ и для ввода простейших видов графической информации - рисунков, чертежей и т. д. Манипулятор мышь представляет собой небольшую коробку, умещающуюся в ладони человека. Эта коробка имеет плоское дно и обычно овальную, по форме руки человека, верхнюю крышку с двумя или тремя клавишами. Кроме клавиш на верхней крышке иногда располагается ролик, который можно легко вращать одним пальцем. Перемещая коробку мыши по поверхности стола, можно совместить указатель мыши с любой точкой на поверхности экрана. Нажатие на одну из клавиш мыши, а также некоторые другие приемы работы с клавишами позволяют задавать выполнение тех или иных действий. Вращение ролика (если он есть) приводит к прокрутке содержимого экрана. В большинстве случаев работа с мышью значительно эффективнее, проще и нагляднее управления с помощью клавиатуры.

Дополнительные устройства ЭВМ.

Принтер - это устройство для вывода текстовой или графической информации на бумагу.

Используемые в настоящее время принтеры по принципу действия можно разделить на три группы - матричные, струйные и лазерные.

Печатающие головки матричных принтеров содержат группу (матрицу) иголок, которые, выдвигаясь из головки в определенных комбинациях и ударяя по красящей ленте, оставляют на бумаге изображение символа. Низкое качество печати и скорость печати, высокий уровень шумов при работе устройства.

Принцип работы струйных принтеров основан на разбрызгивании микроскопических капелек чернил на бумагу сквозь тонкие сопла (или дюзы) в печатающей головке. Обладают хорошим качеством вывода цветных и графических изображений. Недостатки, засыхание чернил в соплах, требовательность к качеству бумаги, достаточно малый ресурс картриджа с чернилами.

Лазерные принтеры используют электрографический способ печати документов. Высокая скорость и высокое качество печати. Отличаются высокой стоимостью и требуют достаточно дорогих расходных материалов: порошка для заправки картриджей - тонера - и специального качества бумагу.

Сканер - устройства для ввода изображений в ЭВМ. Предназначен для ввода в память машины более сложный изображений (чертежей, фотографий, иллюстраций и т. д.), чем простые рисунки. Оптическое устройство сканирует изображение, просматривая его узкими горизонтальными полосками, и сформированный сканером машинный код этого изображения передается в память. Для совместной работы со сканером разработаны программы, позволяющие не только сохранять в памяти машины изображение печатного или рукописного текста, но и распознавать этот текст.

Для ввода графической информации применяются устройства под названием дигитайзеры (графические планшеты). В основе их действия лежит фиксация положения специального пера относительно планшета или экрана дисплея. В последнем случае перо называется световым. Дигитайзеры могут быть использованы художниками для создания всевозможных рисунков, иллюстраций без промежуточного нанесения на бумагу или иной традиционный носитель.

Для подготовки на бумаге различного рода конструкторских документов, чертежей, графиков, рисунков существуют специализированные устройства - графопостроители, или плоттеры. Они позволяют работать с документами очень больших форматов, создавать многоцветные изображения и т. д.

Одним из видов манипуляторов, которые довольно широко распространены в мире компьютерных игр, является джойстик. Он, как и мышь, обеспечивает перемещение курсора по экрану. Состоит из подставки с некоторым количеством кнопок и подвижного рычага, который, собственно, и осуществляет перемещение. На нем также расположено несколько кнопок.

Трекбол - еще одно похожее на мышь устройство. Трекбол представляет собой стационарно устанавливаемый корпус, на верхней поверхности которого имеется шарик, приводимый в движение рукой.

Пенмаус похож на шариковую ручку, на рабочем конце которой находится узел, регистрирующий ее перемещения.

Цифровые фотоаппараты и цифровые видеокамеры формируют изображение прямо в цифровом виде. Это позволяет достаточно просто передавать информацию с этих устройств в память компьютера.

Для обеспечения возможности работы со звуком в среде мультимедиа к аппаратуре персонального компьютера предъявляются определенные требования. В частности, в комплект машины должны входить: акустические стереоколонки, микрофон и звуковой адаптер (звуковая плата, звуковая карта), который связывает различные акустические устройства с машиной.

Тюнеры дают возможность обычной ЭВМ выступать в роли радиоприемника (FM) или телевизора (TV).

Модем - это устройство обмена данными между компьютерами по обычной телефонной сети (один из часто используемых способов подключения машины к сети).

Для обеспечения надежного электропитания компьютеры иногда оснащаются так называемыми ограничителями напряжения, которые сглаживают резкие скачки напряжения в сети до приемлемого уровня, и источниками бесперебойного питания, которые при внезапном отключении электропитания автоматически подключают на некоторое время автономное питание и позволяют сохранить за этот период результаты текущей работы.

Классификация ЭВМ.

Методы классификации компьютеров

Номенклатура видов компьютеров сегодня огромная: машины различаются по назначению, мощности, размерам, элементной базе и т. д. Поэтому классифицируют ЭВМ по разным признакам. Следует заметить, что любая классификация является в некоторой мере условной, поскольку развитие компьютерной науки и техники настолько бурное, что, например, сегодняшняя микроЭВМ не уступает по мощности миниЭВМ пятилетней давности и даже суперкомпьютерам недавнего прошлого. Кроме того, зачисление компьютеров к определенному классу довольно условно через нечеткость разделения групп, так и вследствии внедрения в практику заказной сборки компьютеров, где номенклатуру узлов и конкретные модели адаптируют к требованиям заказчика. Рассмотрим распространенные критерии классификации компьютеров.

Классификация по назначению

1. большие электронно-вычислительные машины (ЭВМ);

2. миниЭВМ;

3. микроЭВМ;

4. персональные компьютеры.

Большие ЭВМ (Main Frame)

Применяют для обслуживания крупных областей народного хозяйства. Они характеризуются 64-разрядными параллельно работающими процессорами (количество которых достигает до 100), интегральным быстродействием до десятков миллиардов операций в секунду, многопользовательским режимом работы. Доминирующее положение в выпуске компьютеров такого класса занимает фирма IBM (США). Наиболее известными моделями суперЭВМ являются: IBM 360, IBM 370, IBM ES/9000, Cray 3, Cray 4, VAX-100, Hitachi, Fujitsu VP2000.

На базе больших ЭВМ создают вычислительный центр, который содержит несколько отделов или групп (структура которого изображена на рис. 2). Штат обслуживания - десятки людей.

группа технического обслуживания

центральний процессор

группа подготовки данных

группа системных программистов

отдел выдачи результатов

группа прикладных программистов

группа информационной поддержки

Центральный процессор - основной блок ЭВМ, в котором происходит обработка данных и вычисление результатов. Представляет собой несколько системных блоков в отдельной комнате, где поддерживается постоянная температура и влажность воздуха.

Группа системного программирования - занимается разработкой, отладкой и внедрением программного обеспечения, необходимого для функционирования вычислительной системы. Системные программы обеспечивают взаимодействие программ с оборудованием, то есть программно-аппаратный интерфейс вычислительной системы.

Группа прикладного программирования - занимается созданием программ для выполнения конкретных действий с данными, то есть обеспечение пользовательского интерфейса вычислительной системы.

Группа подготовки данных - занимается подготовкой данных, которые будут обработаны на прикладных программах, созданных прикладными программистами. В частности, это набор текста, сканирование изображений, заполнение баз данных.

Группа технического обеспечения - занимается техническим обслуживанием всей вычислительной системы, ремонтом и отладкой аппаратуры, подсоединением новых устройств.

Группа информационного обеспечения - обеспечивает технической информацией все подразделения вычислительного центра, создает и сохраняет архивы разработанных программ (библиотеки программ) и накопленных данных (банки данных).

Отдел выдачи данных - получает данные от центрального процессора и превращает их в форму, удобную для заказчика (распечатка).

Большим ЭВМ присуща высокая стоимость оборудования и обслуживания, поэтому работа организована непрерывным циклом.

МиниЭВМ

Похожа на большие ЭВМ, но меньших размеров. Используют на крупных предприятиях, научных учреждениях и организациях. Часто используют для управления производственными процессами. Характеризуются мультипроцессорной архитектурой, подключением до 200 терминалов, дисковыми запоминающими устройствами, которые наращиваются до сотен гигабайт, разветвленной периферией. Для организации работы с миниЭВМ, нужен вычислительный центр, но меньший чем для больших ЭВМ.

МикроЭВМ

Доступны многим учреждениям. Для обслуживания достаточно вычислительной лаборатории в составе нескольких человек, с наличием прикладных программистов. Необходимые системные программы покупаются вместе с микроЭВМ, разработку прикладных программ заказывают в больших вычислительных центрах или специализированных организациях.

Программисты вычислительной лаборатории занимаются внедрением приобретенного или заказанного программного обеспечения, выполняют его настройку и согласовывают его работу с другими программами и устройствами компьютера. Могут вносить изменения в отдельные фрагменты программного и системного обеспечения.

Персональные компьютеры

Бурное развитие приобрели в последние 20 лет. Персональный компьютер (ПК) предназначен для обслуживания одного рабочего места и способен удовлетворить потребности малых предприятий и отдельных лиц. С появлением Интернета популярность ПК значительно возросла, поскольку с помощью персонального компьютера можно пользоваться научной, справочной, учебной и развлекательной информацией.

Персональные компьютеры условно можно поделить на профессиональные и бытовые, но в связи с удешевлением аппаратного обеспечения, грань между ними размывается. С 1999 года введен международный сертификационный стандарт - спецификация РС99:

1. массовый персональный компьютер (Consumer PC)

2. деловой персональный компьютер (Office PC)

3. портативный персональный компьютер (Mobile PC)

4. рабочая станция (WorkStation)

5. развлекательный персональный компьютер (Entertaiment PC)

Большинство персональных компьютеров на рынке подпадают до категории массовых ПК. Деловые ПК - имеют минимум средств воспроизведения графики и звука. Портативные ПК отличаются наличием средств коммуникации отдаленного доступа (компьютерная связь). Рабочие станции - увеличенные требования к устройствам хранения данных. Развлекательные ПК - основной акцент на средствах воспроизведения графики и звука.

Классификация по уровню специализации

1. универсальные;

2. специализированные.

На базе универсальных ПК можно создать любую конфигурацию для работы с графикой, текстом, музыкой, видео и т. п.. Специализированные ПК созданы для решения конкретных задач, в частности, бортовые компьютеры в самолетах и автомобилях. Специализированные миниЭВМ для работы с графикой (кино - видеофильмы, реклама) называются графическими станциями. Специализированные компьютеры, объединяющие компьютеры в единую сеть, называются файловыми серверами. Компьютеры, обеспечивающие передачу информации через Интернет, называются сетевыми серверами.

Классификация по размеру

1. настольные (desktop);

2. портативные (notebook);

3. карманные (palmtop).

Наиболее распространенными являются настольные ПК, которые позволяют легко изменять конфигурацию. Портативные удобны для пользования, имеют средства компьютерной связи. Карманные модели можно назвать "интеллектуальными" записными книжками, разрешают хранить оперативные данные и получать к ним быстрый доступ.

Классификация по совместимости

Существует великое множество типов компьютеров, которые собираются из деталей, изготовленных разными производителями. Важным является совместимость обеспечения компьютера:

1. аппаратная совместимость (платформа IBM PC и Apple Macintosh)

2. совместимость на уровне операционной системы;

3. программная совместимость;

4. совместимость на уровне данных.

Архитектура современных суперЭВМ

В этом обзоре не имеет смысла останавливаться на деталях классификации архитектуры суперкомпьютеров [3,4], ограничимся только рассмотрением типичных архитектур суперЭВМ, широко распространенных сегодня, и приведем классическую систематику Флинна [5].

В соответствии с ней, все компьютеры делятся на четыре класса в зависимости от числа потоков команд и данных. К первому классу (последовательные компьютеры фон Неймана) принадлежат обычные скалярные однопроцессорные системы: одиночный поток команд - одиночный поток данных (SISD). Персональный компьютер имеет архитектуру SISD, причем не важно, используются ли в ПК конвейеры для ускорения выполнения операций.

Второй класс характеризуется наличием одиночного потока команд, но множественного nomoka данных (SIMD). К этому архитектурному классу принадлежат однопроцессорные векторные или, точнее говоря, векторно-конвейерные суперкомпьютеры, например, Cray-1 [6]. В этом случае мы имеем дело с одним потоком (векторных) команд, а потоков данных - много: каждый элемент вектора входит в отдельный поток данных. К этому же классу вычислительных систем относятся матричные процессоры, например, знаменитый в свое время ILLIAC-IV. Они также имеют векторные команды и реализуют векторную обработку, но не посредством конвейеров, как в векторных суперкомпьютерах, а с помощью матриц процессоров.

К третьему классу - MIMD - относятся системы, имеющие множественный поток команд и множественный поток данных. К нему принадлежат не только многопроцессорные векторные суперЭВМ, но и вообще все многопроцессорные компьютеры. Подавляющее большинство современных суперЭВМ имеют архитектуру MIMD.

Четвертый класс в систематике Флинна, MISD, не представляет практического интереса, по крайней мере для анализируемых нами компьютеров. В последнее время в литературе часто используется также термин SPMD (одна программа - множественные данные). Он относится не к архитектуре компьютеров, а к модели распараллеливания программ и не является расширением систематики Флинна. SPMD обычно относится к MPP (т. е. MIMD) - системам и означает, что несколько копий одной программы параллельно выполняются в разных процессорных узлах с разными данными.

Интересно также упомянуть о принципиально ином направлении в развитии компьютерных архитектур - машинах потоков данных[7]. В середине 80-х годов многие исследователи полагали, что будущее высокопроизводительных ЭВМ связано именно с компьютерами, управляемыми потоками данных, в отличие от всех рассмотренных нами классов вычислительных систем, управляемых потоками команд. В машинах потоков данных могут одновременно выполняться сразу много команд, для которых готовы операнды. Хотя ЭВМ с такой архитектурой сегодня промышленно не выпускаются, некоторые элементы этого подхода нашли свое отражение в современных суперскалярных микропроцессорах, имеющих много параллельно работающих функциональных устройств и буфер команд, ожидающих готовности операндов. В качестве примеров таких микропроцессоров можно привести HP РА-8000 [8] и Intel Pentium Pro [9].

В соответствии с классификацией Флинна, рассмотрение архитектуры суперЭВМ следовало бы начать с класса SISD. Однако все векторно-конвейерные (в дальнейшем - просто векторные) суперЭВМ имеют архитектуру "не меньше" SIMD. Что касается суперкомпьютерных серверов, использующих современные высокопроизводительные микропроцессоры, таких как SGI POWER CHALLENGE на базе R8000 или DEC AlphaServer 8200/8400 на базе Alpha 21164, то их минимальные конфигурации бывают однопроцессорными. Однако, если не рассматривать собственно архитектуру этих микропроцессоров, то все особенности архитектуры собственно серверов следует анализировать в "естественной" мультипроцессорной конфигурации. Поэтому начнем анализ суперкомпьютерных архитектур сразу с класса SIMD.

4. Контрольные вопросы

1. Что включают в себя аппаратные средства?

2. Перечислите периферийные устройства.

3. В чем заключается схема фон Неймана?

4. Какие внешние устройства существуют?

5. Что такое материнская плата?

6. Какие устройства входят в состав системного блока?



© 2010-2022