Теория графов

Первая работа по теории графов, принадлежащая известному швейцарскому математику Л. Эйлеру, появилась в 1736г. Вначале теория графов казалась довольно незначительным разделом математики, так как она имела дело в основном с математическими развлечениями и головоломками. Однако дальнейшее развитие математики и особенно её приложений дало сильный толчок развитию теории графов. Уже в XIX столетии графы использовались при построении схем. В настоящее время эта теория находит многочисленное применение в разнообразных практических вопросах: при установлении разного рода соответствий, при решении транспортных задач, задач о потоках в сети нефтепроводов, в программировании и теории игр, теории передачи
Раздел Информатика
Класс -
Тип Другие методич. материалы
Автор
Дата
Формат docx
Изображения Есть
For-Teacher.ru - все для учителя
Поделитесь с коллегами:

Теория графовТеория графовМИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«МОРДОВСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ

ИНСТИТУТ ИМЕНИ М.Е.ЕВСЕВЬЕВА»



ФИЗИКО-МАТЕМАТИЧЕСКИЙ ФАКУЛЬТЕТ

КАФЕДРА МАТЕМАТИКЕ И МЕТОДИКИ ОБУЧЕНИЯ МАТЕМАТИКЕ





РЕФЕРАТ

на тему:

«Теория графов».





Выполнила:

студентка 5 курса группы МДМ-109

Кондрашина О.А.

Проверила: Лапина И.Э.

Саранск 2014


Оглавление

Первая работа по теории графов, принадлежащая известному швейцарскому математику Л. Эйлеру, появилась в 1736г. Вначале теория графов казалась довольно незначительным разделом математики, так как она имела дело в основном с математическими развлечениями и головоломками. Однако дальнейшее развитие математики и особенно её приложений дало сильный толчок развитию теории графов. Уже в XIX столетии графы использовались при построении схем.

В настоящее время эта теория находит многочисленное применение в разнообразных практических вопросах: при установлении разного рода соответствий, при решении транспортных задач, задач о потоках в сети нефтепроводов, в программировании и теории игр, теории передачи сообщений. Теория графов теперь применяется и в таких областях, как экономика, психология и биология.

В этой работе мы подробнее рассмотрим эйлеровы графы, основные сведения и теоремы, связанные с этим понятием. А также задачи, которые решаются с помощью эйлеровых графов.

  1. Основные понятия теории графов

Граф G - пара (V,X), где V конечное непустое множество, содержащее p вершин, а множество Х содержит q неупорядоченных пар различных вершин из V.

Каждую пару X={u,v} вершин в Х называют ребром графа G и говорят, что Х соединяет u и v.Мы будем писать X=uv и говорить, что u и v - смежные вершины. Вершина u и ребро Х инцидентны, так же как v и Х. Если два различных ребра X и Y инцидентны одной и той же вершине, то они называются смежными. Граф с р вершинами и q ребрами называется (p;q)- графом. Граф (1,0)- называется тривиальным.[6]

Если элементом множества V может быть пара одинаковых элементов u, то такой элемент множества V называется петлёй.[3]

2. Типы графов:

· Мультиграф, в нём не допускаются петли, но пары вершин могут соединяться более чем одним ребром, эти рёбра называются кратными (рис.1).

· Псевдограф, в нём допускаются петли и кратные рёбра (рис.2).


Теория графов

Теория графов


Рис.1 Рис.2

· Ориентированный граф, или орграф, состоит из конечного непустого множества V вершин и заданного набора Х упорядоченных пар различных вершин. Элементы из Х называются ориентированными рёбрами, или дугами. Нет петель и кратных дуг (рис. 3).



Теория графов


Теория графов





Рис.3

Рис.4

· Направленный граф - это орграф, не имеющий симметричных пар ориентированных рёбер (рис.4).

· Помеченные графы (или перенумерованные), если его вершины отличаются одна от другой какими-либо пометками. В качестве пометок обычно используются буквы или целые числа.[6]

Степенью вершины vi в графе G называется число рёбер, инцидентных vi ,обозначается di.[6] Для орграфа вводятся понятия степени входа и выхода. Степенью выхода вершины v называется количество рёбер, для которых v является начальной вершиной, обозначается outdeg(v). Степенью входа вершины v называется количество рёбер , для которых v является конечной вершиной, обозначается indeg(v). Если indeg(v)=0, то вершина v называется источником. Если outdeg(v)=0, то вершина v называется стоком.[1]

3. Маршруты и связность

Граф G/(U/,V/) называется подграфом графа G(U,V), если U/ÌU и V/ÌV. Обозначение: G/ÌG.

Если V/=V, то G/ называется остовным подграфом G.[3]

Маршрутом в графе G называется чередующаяся последовательность вершин и рёбер v0,x1,v1,…vn-1,xn,vn; эта последовательность начинается и кончается вершиной, и каждое ребро последовательности инцидентно двум вершинам, одна из которых непосредственно предшествует ему, а другая непосредственно следует за ним. Указанный маршрут соединяет вершины v0 и vn и его можно обозначить v0v1v2…vn (наличие рёбер подразумевается). Эта последовательность иногда называется (v0-vn)-маршрутом. Маршрут замкнут, если v0=vn, и открыт в противном случае. Маршрут называется цепью, если все его рёбра различны, и простой цепью, если все вершины (а следовательно, и рёбра ) различны. Замкнутая цепь называется циклом. Замкнутый маршрут называется простым циклом, если все его n вершин различны и n³3.

Граф G называется связным, если любая пара его вершин соединена простой цепью.[6]

4. Задача о кёнигсбергских мостах.

Отцом теории графов является Эйлер (1707-1782), решивший в 1736г. широко известную в то время задачу, называвшуюся проблемой Кёнигсбергских мостов. В городе Кёнигсберге (ныне Калининград) было два острова, соединенных семью мостами с берегами реки Преголя и друг с другом так, как показано на рисунке 5. Задача состояла в следующем: найти маршрут прохождения всех четырёх частей суши, который начинался бы с любой из них, кончался бы на этой же части и ровно один раз проходил по каждому мосту.












Легко, конечно попытаться решить эту задачу эмпирически, производя перебор всех маршрутов, но все попытки окончатся неудачей. Исключительный вклад Эйлера в решение этой задачи заключается в том, что он доказал невозможность такого маршрута.

Для доказательства того, что задача не имеет решения, Эйлер обозначил каждую часть суши точкой (вершиной), а каждый мост - линией (ребром), соединяющей соответствующие точки. Получился "граф". Этот граф показан на рисунке 6, где точки отмечены теми же буквами, что и четыре части суши на рисунке 5.

Теория графов

Рис.6.

Утверждение о не существовании "положительного" решения у этой задачи эквивалентно утверждению о невозможности обойти специальным образом граф, представленный на рисунке 6.

Отправляясь от этого частного случая Эйлер обобщил постановку задачи и нашёл критерий существования обхода у данного графа, а именно граф должен быть связным и каждая его вершина должна быть инцидентна чётному числу рёбер.[6]

5. Некоторые задачи теории графов

Проблема семи мостов Кёнигсберга - один из первых результатов в теории графов, опубликован Эйлером в 1736.

  • Проблема четырёх красок - была сформулирована в 1852 году, но неклассическое доказательство получено лишь в 1976 году (достаточно 4-х красок для карты на сфере (плоскости)).

  • Задача коммивояжёра - одна из наиболее известных NP-полных задач.

Задача коммивояжёра - одна из самых известных задач комбинаторной оптимизации, заключающаяся в отыскании самого выгодного маршрута, проходящего через указанные города хотя бы по одному разу с последующим возвратом в исходный город. В условиях задачи указываются критерий выгодности маршрута (кратчайший, самый дешёвый, совокупный критерий и тому подобное) и соответствующие матрицы расстояний, стоимости и тому подобного. Как правило, указывается, что маршрут должен проходить через каждый город только один раз - в таком случае выбор осуществляется среди гамильтоновых циклов.

  • Задача о клике - ещё одна NP-полная задача.

Задача о клике относится к классу NP-полных задач в области теории графов. Впервые она была сформулирована в 1972 году Ричардом Карпом.

Кликой в неориентированном графе называется подмножество вершин, каждые две из которых соединены ребром графа. Иными словами, это полный подграф первоначального графа. Размер клики определяется как число вершин в ней. Задача о клике существует в двух вариантах: в задаче распознавания (англ. Decision problem) требуется определить, существует ли в заданном графе G клика размера k, в то время как в вычислительном варианте требуется найти в заданном графе G клику максимального размера.

  • Нахождение минимального стягивающего (остовного) дерева.

  • Изоморфизм графов - можно ли путем перенумерации вершин одного графа получить другой.

  • Планарность графа - можно ли изобразить граф на плоскости без пересечений ребер (или с минимальным числом слоев, что находит применение при трассировке межсоединений элементов печатных плат или микросхем).

К теории графов также относится целый ряд математических проблем, не решенных на сегодняшний день.


Список используемых источников



  1. kazedu.kz/referat/176077

  2. ru.wikipedia.org/wiki/

  3. ru.wikipedia.org/wiki/

  4. ru.wikipedia.org/wiki/

11


© 2010-2022