Реферат на тему: Системы счисления

Раздел Информатика
Класс -
Тип Другие методич. материалы
Автор
Дата
Формат docx
Изображения Нет
For-Teacher.ru - все для учителя
Поделитесь с коллегами:

Реферат

Системы счисления

Системой счисления называют систему приемов и правил, позволяющих устанавливать взаимно-однозначное соответствие между любым числом и его представлением в виде совокупности конечного числа символов. Множество символов, используемых для такого представления, называют цифрами.

В зависимости от способа изображения чисел с помощью цифр системы счисления делятся на позиционные и непозиционные.

В непозиционных системах любое число определяется как некоторая функция от численных значений совокупности цифр, представляющих это число. Цифры в непозиционных системах счисления соответствуют некоторым фиксированным числам. Пример непозиционной системы - рассмотренная ранее римская система счисления. Дpевние египтяне пpименяли систему счисления, состоящую из набоpа символов, изобpажавших pаспpостpаненные пpедметы быта. Совокупность этих символов обозначала число. Расположение их в числе не имело значения, отсюда и появилось название.

Исторически первыми системами счисления были именно непозиционные системы. Одним из основных недостатков является трудность записи больших чисел. Запись больших чисел в таких системах либо очень громоздка, либо алфавит системы чрезвычайно велик.

В вычислительной технике непозиционные системы не применяются.

Систему счисления называют позиционной, если одна и та же цифра может принимать различные численные значения в зависимости от номера разряда этой цифры в совокупности цифр, представляющих заданное число. Пример такой системы - арабская десятичная система счисления.

Количества и количественные составляющие, существующие реально могут отображаться различными способами. В общем случае в позиционной системе счисления число N может быть представлено как:

, где:

- основание системы счисления (целое положительное число, равное числу цифр в данной системе);

- любые цифры из интервала от нуля до .

Основание позиционной системы счисления определяет ее название. В вычислительной технике применяются двоичная, восьмеричная, десятичная и шестнадцатеричная системы. В дальнейшем, чтобы явно указать используемую систему счисления, будем заключать число в скобки и в нижнем индексе указывать основание системы счисления.

Каждой позиции в числе соответствует позиционный (разрядный) коэффициент или вес.

Пример. Способ образования десятичного числа

Для десятичной системы соответствия между позицией и весом следующее:

в общем случае:

В настоящее время позиционные системы счисления более широко распространены, чем непозиционные. Это объясняется тем, что они позволяют записывать большие числа с помощью сравнительно небольшого числа знаков. Еще более важное преимущество позиционных систем - это простота и легкость выполнения арифметических операций над числами, записанными в этих системах.

Вычислительные машины в принципе могут быть построены в любой системе счисления. Но столь привычная для нас десятичная система окажется крайне неудобной. Если в механических вычислительных устройствах, использующих десятичную систему, достаточно просто применить элемент со множеством состояний (колесо с десятью зубьями), то в электронных машинах надо было бы иметь 10 различных потенциалов в цепях.

1. Двоичная система счисления: основные сведения

В двоичной системе счисления используются только два символа, что хорошо согласуется с техническими характеристиками цифровых схем. Действительно очень удобно представлять отдельные составляющие информации с помощью двух состояний:

· Отверстие есть или отсутствует (перфолента или перфокарта);

· Материал намагничен или размагничен (магнитные ленты, диски);

· Уровень сигнала большой или маленький.

Существуют специальные термины, широко используемые в вычислительной технике: бит, байт и слово.

Битом называют один двоичный разряд. Крайний слева бит числа называют старшим разрядом (он имеет наибольший вес), крайний справа - младшим разрядом (он имеет наименьший вес).

Восьмибитовая единица носит название байта.

Многие типы ЭВМ и дискретных систем управления перерабатывают информацию порциями (словами) по 8, 16 или 32 бита (1, 2 и 4 байта). Двоичное слово, состоящее из двух байт, показано на рисунке 1

2. Взаимный перевод двоичных и десятичных чисел и элементарные двоичные арифметические действия

2.1. Представление двоичных чисел и перевод их в десятичные

Совершенно очевидно, что двоичное число представляется последовательностью нулей и единиц - разрядов. Как и в любой позиционной системе, каждому разряду присвоен определенный вес - показатель степени основания системы. Веса первых 10 позиций представлены в таблице 1.

Таблица 1. Веса первых десяти позиций двоичной системы счисления

Позиция

9

8

7

6

5

4

3

2

1

0

Вес

512

256

128

64

32

16

8

4

2

1

Образование






В двоичной системе счисления даже сравнительно небольшие числа занимают много позиций.

Как и в десятичной системе, в двоичной системе счисления для отделения дробной части используется точка (двоичная точка). Каждая позиция слева от этой точки также имеет свой вес - вес разряда дробной части числа. Значение веса в этом случае равно основанию системы счисления (т.е. двойке), возведенному в отрицательную степень.

Получить десятичное число из двоичного чрезвычайно просто. Согласно формуле 2.3 для двоичной системы счисления получаем:

Пример. Перевод двоичного числа в десятичное

2.2. Преобразование десятичных чисел в двоичные

Перевод из двоичной системы в десятичную несколько сложнее. Рассмотрим несколько алгоритмов.

2.2.1. Метод вычитания

Из десятичного числа вычитаются наибольшая возможная степень двойки, в соответствующий разряд двоичного числа записывается единица, если разность меньше следующей степени двойки, то далее записывается нуль, а если больше записывается единица и опять производится вычитание, и так до тех пор, пока исходное число не уменьшится до нуля.

Пример. Перевод десятичного числа в двоичное методом вычитания

2.2.2 Метод деления

Другим методом является так называемый метод деления. Он применяется для преобразования целых чисел. Ниже приведен его алгоритм.

Разделим нацело десятичное число на двойку. Если есть остаток, запишем в младший разряд единицу, а если нет - нуль и снова разделим результат от первого деления. Повторим процедуру так до тех пор, пока окончательный результат не обнулиться.

Пример. Перевод десятичного числа в двоичное методом деления

2



148

-74

2


1

74

-37

2


0

36

-18

2


1

18

-9

2


0

8

-4

2


1

4

-2

2


0

2

-1

2


0

0

0



1

старший разряд

(10010101)2=(149)10

ответ






2.2.3 Метод умножения

И, наконец, метод умножения. Метод применяется для преобразования десятичных дробей (чисел меньших единицы).

Число умножается на 2, если результат 1, то в старший разряд записывается единица, если нет, то нуль. Умножаем на 2 дробную часть результата и повторяем процедуру. И так далее до получения нужной степени точности или до обнуления результата.

Пример. Перевод десятичного числа в двоичное методом умножения

2.3. Арифметические действия над двоичными числами

Арифметика двоичной системы счисления основана на использовании таблиц сложения, вычитания и умножения. Эти таблицы чрезвычайно просты:

Таблица

сложения

0

+

0

=

0

0

+

1

=

1

1

+

0

=

1

1

+

1

=

10

Таблица

умножения


0

0

=

0

0

1

=

0

1

0

=

0

1

1

=

1

Таблица

вычитания


0

-

0

=

0

1

-

0

=

1

1

-

1

=

1

10

-

1

=

1


2.3.1. Двоичное сложение

Двоичное сложение выполняется по тем же правилам, что и десятичное, с той лишь разницей, что перенос в следующий разряд производиться после того, как сумма достигнет не десяти, а двух.

Пример. Сложение двоичных чисел и

+

101101

111110

010011

- поразрядная сумма без учета переносов


+

1011000

- переносы

0010011

1001011

- поразрядная сумма без учета повторных переносов


+

0100000

- повторные переносы

1001011

1101011

- окончательный результат


Легко произвести проверку:

,

,

,

.

Пример. Сложение двоичных чисел и

+

110,

1011

10111,

10101

10001,

00011

- поразрядная сумма без учета переносов



+

11 1,

1

- переносы

10001,

00011

11100,

01011

- поразрядная сумма без учета повторных переносов



+

1 ,

- повторные переносы

11100,

01011

11110,

01011

- окончательный результат


Сложение нескольких чисел вызывает некоторые трудности, так как в результате поразрядного сложения могут получится переносы, превышающие единицу.

2.3.2 Двоичное вычитание

Вычитание в двоичной системе выполняется аналогично вычитанию в десятичной системе счисления. При необходимости, когда в некотором разряде приходится вычитать единицу из нуля, занимается единица из следующего старшего разряда. Если в следующем разряде нуль, то заем делается в ближайшем старшем разряде, в котором стоит единица. При этом следует понимать, что занимаемая единица равна двум единицам данного разряда, т. е. вычитание выполняется по следующему правилу:

Пример. Вычитание двоичных чисел и

-

11010,

1011

1101,

01111

1101,

00111


Конечно, математически вычитание выполнить несложно. Однако, если поступать таким образом, то к примеру в ЭВМ придется для выполнения сложения и вычитания иметь два блока: сумматор и вычитатель. Поэтому поступают следующим образом: вычитание можно представить как сложение положительного и отрицательного чисел, необходимо только подходящее представление для отрицательного числа.

Рассмотрим четырехразрядный десятичный счетчик, какие в автомобиле отсчитывают пройденный путь. Пусть он показывает число 2, если вращать его в обратном направлении, то сначала появится 1, затем 0, после 0 появится число 9999. Сложим, к примеру, 6 с этим числом:

+

6

9999

10005



Если пренебречь единицей переноса и считать 9999 аналогом -1, то получим верный результат: .

Число 9999 называется десятичным дополнением числа 1. Таким образом, в десятичной системе счисления отрицательные числа могут быть представлены в форме десятичного дополнения, а знак минус можно опустить.

Двоичное дополнение числа определяется как то число, которое будучи прибавлено к первоначальному числу, даст только единицу переноса в старшем разряде.

Пример. Двоичное дополнение числа

+

010101111

- число

101010001

- двоичное дополнение

1000000000

- сумма

- единица переноса


Для получения двоичного дополнения необходимо:

· получить обратный код, который образуется инвертированием каждого бита:

010101111

- число

101010000

- обратный код


· прибавить к обратному коду единицу, образовав таким образом дополнительный код:

+

101010000

- обратный код

1

101010001

- дополнительный код


Пример. Вычитание в дополнительном коде

- обратный код,

- дополнительный код.

1001012=510 (верно).

2.3.3 Двоичное умножение

Умножение двух двоичных чисел выполняется так же, как и умножение десятичных. Сначала получаются частичные произведения и затем их суммируют с учетом веса соответствующего разряда множителя.

Отличительной особенностью умножения в двоичной системе счисления является его простота, обусловленная простотой таблицы умножения. В соответствии с ней, каждое частичное произведение или равно нулю, если в соответствующем разряде множителя стоит нуль, или равно множимому, сдвинутому на соответствующее число разрядов, если в соответствующем разряде множителя стоит единица. Таким образом, операция умножения в двоичной системе сводится к операциям сдвига и сложения.

Умножение производится, начиная с младшего или старшего разряда множителя, что и определяет направление сдвига. Если сомножители имеют дробные части, то положение запятой в произведении определяется по тем же правилам, что и для десятичных чисел.

Пример. Умножение двоичных чисел и

2.3.4 Двоичное деление

Деление чисел в двоичной системе производится аналогично делению десятичных чисел. Рассмотрим деление двух целых чисел, так как делимое и делитель всегда могут быть приведены к такому виду путем перениесения запятой в делимом и делителе на одиноаковое число разрядов и дописывания необходимых нулей. Деление начинается с того, что от делимого слева отделяется минимальная группа разрядов, которая, рассматриваемая как число, превышает или равна делителю. Дальнейшие действия выполняются по обычным правилам, причем последняя целая цифра частного получается тогда, когда все цифры делимого исчерпаны.

Пример. Деление двоичных чисел

1) 18:2

2) 14:4



10010

10

1110

100

10

1001=(9)10

100

11,1=(3,5)10

00

110

00

100

001

100

000

100

10

0

10


00






© 2010-2022