Реферат на тему Компьютер внутри человека, сопровождаемый презентацией

В данном реферате ученицы 11 класса проводятся аналогии между работой центральной нервной системой человека и работой компьютера, раскрывает принципы кодирования информации в нервной системе человека. В ближайшем будущем возможно создание электронных носителей, сопоставимых по ёмкости с человеческим мозгом. Но для того, чтобы осуществить все смелые замыслы ученых, необ­ходима прочная теоретическая база. А обеспечить её поможет молодая, стремительно развивающаяся наука, своеобразный союз биологии...
Раздел Информатика
Класс -
Тип Презентации
Автор
Дата
Формат rar
Изображения Есть
For-Teacher.ru - все для учителя
Поделитесь с коллегами:

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ


Средняя общеобразовательная школа

с углубленным изучением отдельных предметов №256



Р Е Ф Е Р А Т

по информатике

ТЕМА: Компьютер внутри человека



Исполнитель Руководитель

Шмелёва Михайличенко

Анна Алексеевна Наталия Викторовна

11 «А»



г. Фокино

2006


Оглавление

Введение...............................................................................................3

1. Нейрон - структурная единица ЦНС.....................................................4

2. Принципы кодирования информации в ЦНС..........................................5

2.1. Нейронные механизмы восприятия.................................................8

2.2.Восприятие цвета с позиции векторной модели

обработки информации.................................................................11

2.3.Векторная модель управления двигательными и

вегетативными реак­циями............................................................12

3. Нейронные сети................................................................................14

4. Настоящий компьютер внутри человека..............................................16

Заключение..........................................................................................17

Список литературы................................................................................18

Приложение 1........................................................................................19

Приложение 2........................................................................................21

Введение


Многие исследователи уподобляют нервную систему компьютеру, регули­рующему и координирующему жизнедеятельность организма. Чтобы человек удачно вписался в картину окружающего мира, этому внутреннему компью­теру приходится решать четыре главные задачи. Они являются основными функциями нервной системы.

Прежде всего, она воспринимает все действующие на организм раздражи­тели. Всю воспринятую информацию о температуре, цвете, вкусе, запахе и других характеристиках явлений и предметов нервная система преобразует в электрические импульсы, которые передаёт в отделы мозга - головного и спинного. Каждый из нас обладает «биологическим телеграфом» - в его пре­делах сигналы распространяются со скоростью до 400 км/час. «Теле­графные провода» - корешки, корешковые нервы, узлы и магистральные нервные стволы. Их насчитывают 86, причём каждый разделяется на множе­ство более мелких веточек, и все они «приписаны» к периферической нерв­ной системе (см. Приложение 1, рис.1).

Наш внутренний компьютер обрабатывает поступившие данные: анализи­рует, систематизирует, запоминает, сравнивает с ранее полученными сооб­щениями и уже имеющимся опытом. «Генеральный штаб», обрабатывающий сигналы, подаваемые как извне, так и изнутри тела, - головной мозг. Вер­ный «адъютант» при штабе - мозг спинной ­- служит своеобразным органом ме­стного самоуправления, а также связующим звеном с вышестоящими отде­лами биологического компьютера. Вместе с головным спинной мозг обра­зует центральную нервную систему (ЦНС).

В своем реферате я рассмотрела процессы передачи и кодирования ин­формации, происходящие в нервной системе, с точки зрении информацион­ных технологий, кратко рассказала об искусственных нейронных сетях и о компьютере, способном работать внутри человека.


1. Нейрон - структурная единица ЦНС

Безупречную слаженность нервной системы обеспечивают 20 млрд. ней­ронов (греч. «нейрон» - «жила», «нерв») - специализированных клеток. Четвёр­тая часть нейронов сосредоточена в спинном мозге и примыкающих к нему спинномозговых узлах. Остальные располагаются в так называемом се­ром веществе (коре и подкорковых центрах) головного мозга.

Нейрон состоит из тела (сома с ядром), множества древовидных отро­стков - дендритов - и длинного аксона (см. Приложение 1, рис.3). Дендриты слу­жат в качестве входных кана­лов для нервных импульсов от других ней­ронов. Импульсы поступают в сому, вызывая её специфическое возбужде­ние, рас­пространяющееся затем по вы­водному отростку - аксону. Соеди­няются ней­роны с помощью спе­ци­альных контактов - синапсов, в ко­торых разветвления аксона одного ней­рона под­ходят очень близко (на расстоянии нескольких десятков микронов) к соме или дендритам друго­го нейрона.

Нейроны, размещающиеся в ре­цепторах, воспринимают внешние раздра­же­ния, в сером веществе ство­ла головного и спинного мозга - управляют дви­жениями человека (мышцами и железами), в мозге - связывают чувстви­тельные и двига­тельные нейроны. Последние обра­зуют различные мозговые центры, где происходит преобразование инфор­мации, поступившей от внеш­них раз­дражителей, в двигательные сигналы.

Как же работает эта система? В нейронах происходят три основных про­цесса: синаптическое возбужде­ние, синаптическое торможение и возникно­вение нервных импульсов. Синаптические процессы обеспе­чиваются осо­быми химическими веществами, которые выделяются окончаниями одного нейрона и вза­имодействуют с поверхностью дру­гого. Синаптическое возбуж­дение вы­зывает ответную реакцию нейрона и при достижении определён­ного по­рога переходит в нервный импульс, быстро распространяющийся по отросткам. Торможение, напротив, уменьшает общий уровень возбуди­мости нейрона.

2.Принципы кодирования информации в нервной системе


Сегодня можно говорить о нескольких принципах кодирования в нервной системе. Одни из них достаточно просты и характерны для периферического уровня обработки информации, другие - более сложны и характеризуют пе­редачу информации на более высоких уровнях нервной системы, включая кору.

Одним из простых способов кодирования информации признается специ­фич­ность рецепторов, избирательно реагирующих на определенные пара­метры стимуляции, например колбочки с разной чувствительностью к длинам волн видимого спектра, рецепторы давления, болевые, тактильные и др.

Другой способ передачи информации получил название частотного кода. Наиболее явно он связан с кодированием интенсивности раздражения. Час­тотный способ кодирования информации об интенсивности стимула, вклю­чающего операцию логарифмирования, согласуется с психофизическим за­коном Г. Фехнера о том, что величина ощущения пропорциональна лога­рифму интенсивности раздражителя.

Однако позже закон Фехнера был подвергнут серьезной критике. С. Сти­вене на основании своих психофизических исследований, проведенных на людях с применением звукового, светового и электрического раздражения, взамен закона Фехнера предложил закон степенной функции. Этот закон гласит, что ощущение пропорционально показателю степени стимула, при этом закон Фехнера представляет лишь частный случай степенной зависимо­сти.

Анализ передачи сигнала о вибрации от соматических рецепторов пока­зал, что информация о частоте вибрации передается с помощью частоты, а ее ин­тенсивность кодируется числом одновременно активных рецепторов.

В качестве альтернативного механизма к первым двум принципам кодиро­ва­ния - меченой линии и частотного кода - рассматривают также паттерн от­вета нейрона. Устойчивость временного паттерна ответа - отличительная черта нейронов специфической системы мозга. Система передачи информа­ции о стимулах с помощью рисунка разрядов нейрона имеет ряд ограниче­ний. В нейронных сетях, работающих по этому коду, не может соблюдаться принцип экономии, так как он требует дополнительных операций и времени по учету начала, конца реакции нейрона, определения ее длительности. Кроме того, эффективность передачи информации о сигнале существенно за­висит от состояния нейрона, что делает данную систему кодирования недос­таточно надежной.

Идея о том, что информация кодируется номером канала, присутствовала уже в опытах И.П. Павлова с кожным анализатором собаки. Вырабатывая ус­ловные рефлексы на раздражение разных участков кожи лапы через «ка­салки», он установил наличие в коре больших полушарий соматотопической проекции. Раздражение определенного участка кожи вызывало очаг возбуж­дения в определенном локусе соматосенсорной коры. Пространственное со­ответствие места приложения стимула и локуса возбуждения в коре полу­чило подтверждение и в других анализаторах: зрительном, слуховом. Тоно­топическая проекция в слуховой коре отражает пространственное рас­поло­жение волосковых клеток кортиевого органа, избирательно чувстви­тельных к различной частоте звуковых колебаний. Такого рода проекции можно объ­яснить тем, что рецепторная поверхность отображается на карте коры по­средством множества параллельных каналов - линий, имеющих свои номера. При смещении сигнала относительно рецепторной поверхности мак­симум возбуждения перемещается по элементам карты коры. Сам же элемент карты представляет локальный детектор, избирательно отвечающий на раз­дражение определенного участка рецепторной поверхности. Детекторы ло­кальности, обладающие точечными рецептивными полями и избирательно реагирующие на прикосновение к определенной точке кожи, являются наи­более простыми детекторами. Совокупность детекторов локальности обра­зует карту кожной поверхности в коре. Детекторы работают параллельно, каждая точка кожной поверхности представлена независимым детектором.

Сходный механизм передачи сигнала о стимулах действует и тогда, когда стимулы различаются не местом приложения, а другими признаками. Появ­ление локуса возбуждения на детекторной карте зависит от параметров сти­мула. С их изменением локус возбуждения на карте смещается. Для объясне­ния организации нейронной сети, работающей как детекторная сис­тема, Е.Н. Соколов предложил механизм векторного кодирования сигнала.

Принцип векторного кодирования информации впервые был сформулиро­ван в 50-х годах шведским ученым Г. Йохансоном, который и положил на­чало новому направлению в психологии - векторной психологии. Г. Йохансон по­казал, что если две точки на экране движутся навстречу друг другу - одна по горизонтали, другая по вертикали, - то человек видит дви­жение одной точки по наклонной прямой. Для объяснения эффекта иллюзии движения Г. Йохансон использовал векторное представление. Движение точки рассмат­ривается им как результат формирования двухкомпонентного вектора, отра­жающего действие двух независимых факторов (движения в го­ризонтальном и вертикальном направлениях). В дальнейшем векторная мо­дель была рас­пространена им на восприятие движений корпуса и конечностей человека, а также на движение объектов в трехмерном про­странстве. Е.Н Соколов развил векторные представления, применив их к изучению нейронных механизмов сенсорных процессов, а также двигатель­ных и вегетативных реакций.

Векторная психофизиология - новое направление, ориентированное на со­единение психологических явлений и процессов с векторным кодирова­нием информации в нейронных сетях.










2.1. Нейронные механизмы восприятия

Сведения о нейронах сенсор­ных систем, накопленные за последние десятилетия, подтверждают детекторный принцип нейронной организации са­мых разных анализаторов. Рассмотрим механизмы восприятия в нервной системе на примере зрительного анализатора.

Для зрительной коры были описаны нейроны-де­текторы, избирательно отвечающие на элементы фигуры, контура - ли­нии, полосы, углы.

Важным шагом в развитии теории сенсорных систем явилось открытие константных нейронов-детекторов, учитывающих, кроме зрительных сигна­лов, сигналы о положении глаз в орбитах. В теменной коре реакция кон­стантных нейронов-детекторов привязана к определенной области внешнего пространства, образуя константный экран. Другой тип константных нейро­нов-детекторов, кодирующих цвет, открыт С. Зеки в экстрастриарной зри­тельной коре. Их реакция на определенные отражательные свойства цвето­вой поверхности объекта не зависит от условий освещения.

Изучение вертикальных и горизонтальных связей нейронов-детекторов различного типа привело к открытию общих принципов нейронной архитек­туры коры. В. Маунткасл - ученый из медицинской школы Университета Джонса Гопкинса - в 60-х годах впервые описал вертикальный принцип ор­ганизации коры больших полушарий. Исследуя нейроны соматосенсорной коры у наркотизированной кошки, он нашел, что они по модальности сгруп­пированы в вертикальные колонки. Одни колонки реагируют на стимуляцию правой стороны тела, другие - левой, а два других типа колонок различа­лись тем, что одни из них избирательно реагировали на прикосновение или на отклонение волосков на теле (т.е. на раздражение рецепторов, располо­женных в верхних слоях кожи), другие - на давление или на движение в суставе (на стимуляцию рецепторов в глубоких слоях кожи). Колонки имели вид трехмерных прямоугольных блоков разной величины и проходили через все клеточные слои. Со стороны поверхности коры они выглядели как пла­стины размером от 20-50 мкм до 0,25-0,5 мм. Позже эти данные подтвер­дились и на наркотизированных обезьянах другие исследователи уже на не­наркотизированных животных (макаках, кошках, крысах) также предста­вили дополнительные доказательства колончатой организации коры.

Благодаря работам Д. Хьюбела и Т. Визеля сегодня мы более детально представляем колончатую организацию зрительной коры. Исследователи ис­пользуют термин «колонка», предложенный В. Маунткаслом, но отмечают, что наиболее подходящим был бы термин «пластина». Говоря о колончатой организации, они подразумевают, что «некоторое свойство клеток остается постоянным во всей толще коры от ее поверхности до белого вещества, но изменяется в направлениях, параллельных поверхности коры» Сначала в зрительной коре были обнаружены группы клеток (колонок), связанных с разной глазодоминантностъю, как наиболее крупные. Было замечено, что всякий раз, когда регистрирующий микроэлектрод входил в кору обезьяны перпендикулярно ее поверхности, он встречал клетки, лучше реагирующие на стимуляцию только одного глаза. Если же его вводили на несколько мил­лиметров в сторону от предыдущего, но также вертикально, то для всех встречающихся клеток доминирующим был только один глаз - тот же, что и раньше, или другой. Если же электрод вводили с наклоном и как можно бо­лее параллельно поверхности коры, то клетки с разной глазодоми-нантно­стью чередовались. Полная смена доминантного глаза происходила примерно через каждый 1 мм.

Кроме колонок глазодоминантности, в зрительной коре разных живот­ных (обезьяна, кошка, белка) обнаружены ориентационные колонки. При верти­кальном погружении микроэлектрода через толщу зрительной коры все клетки в верхних и нижних слоях избирательно реагируют на одну и ту же ориентацию линии. При смещении микроэлектрода картина остается той же, но меняется предпочитаемая ориентация, т.е. кора разбита на колонки, предпочитающие свою ориентацию. Радиоавтографы, взятые со срезов коры после стимуляции глаз полосками, определенным образом ориентирован­ными, подтвердили результаты электрофизиологических опытов. Соседние колонки нейронов выделяют разные ориентации линий.

В коре обнаружены также колонки, избирательно реагирующие на на­правление движения или на цвет. Ширина цветочувствителъных колонок в стриарной коре около 100-250 мкм. Колонки, настроенные на разные длины волн, чередуются. Колонка с максимальной спектральной чувствительностью к 490-500 нм сменяется колонкой с максимумом цветовой чувствительности к 610 нм. Затем снова следует колонка с избирательной чувствительностью к 490-500 нм. Вертикальные колонки в трехмерной структуре коры образуют аппарат многомерного отражения внешней среды.

В зависимости от степени сложности обрабатываемой информации в зри­тельной коре выделено три типа колонок. Микроколонки реагируют на от­дельные градиенты выделяемого признака, например на ту или другую ориентацию стимула (горизонтальную, вертикальную или другую). Макроко­лонки объединяют микроколонки, выделяющие один общий признак (напри­мер, ориентацию), но реагирующие на разные значения его градиента (раз­ные наклоны - от 0 до 180°). Гиперколонка, или модуль, представляет со­бой локальный участок зрительного поля и отвечает на все стимулы, попа­дающие на него. Модуль - вертикально организованный участок коры, вы­полняющий обработку самых разнообразных характеристик стимула (ориен­тации, цвета, глазодоминантности и др.). Модуль собирается из мак­роколо­нок, каждая из которых реагирует на свой признак объекта в локаль­ном уча­стке зрительного поля. Членение коры на мелкие вертикальные подразделе­ния не ограничивается зрительной корой. Оно при­сутствует и в других областях коры (в теменной, префронтальной, моторной коре и др.).

В коре существует не только вертикальная (колончатая) упорядочен­ность размещения нейронов, но и горизонтальная (послойная). Нейроны в колонке объединяются по общему признаку. А слои объединяют нейроны, выделяю­щие разные признаки, но одинакового уровня сложности. Нейроны-детек­торы, реагирующие на более сложные признаки, локализованы в верх­них слоях.

Таким образом, колончатая и слоистая организации нейронов коры сви­де­тельствуют, что обработка информации о признаках объекта, таких, как форма, движение, цвет, протекает в параллельных нейронных каналах. Вме­сте с тем изучение детекторных свойств нейронов показывает, что принцип дивергенции путей обработки информации по многим параллельным каналам должен быть дополнен принципом конвергенции в виде иерархически орга­низованных нейронных сетей. Чем сложнее информация, тем более сложная структура иерархически организованной нейронной сети требуется для ее обработки.



2.2.Восприятие цвета с позиции векторной модели обработки информации

Анализатор цвета включает рецепторный и нейронный уровни сетчатки, ЛКТ таламуса и различные зоны коры. На уровне рецепторов падающие на сетчатку излучения видимого спектра у человека преобразуются в реакции трех типов колбочек, содержащих пигменты с максимумом поглощения кван­тов в коротковолновой, средневолновой и длинноволновой частях видимого спектра. Реакция колбочки пропорциональна логарифму интенсивности сти­мула. В сетчатке и ЛКТ существуют цветооппонентные нейроны, противопо­ложно реагирующие на пары цветовых стимулов (красный-зеленый и жел­тый-синий). Их часто обозначают первыми буквами от английских слов: +К-С; -К+С; +У-В; -У+В. Различные комбинации возбуждений колбочек вы­зы­вают разные реакции оппонентных нейронов. Сигналы от них достигают цве­точувствительных нейронов коры.

Восприятие цвета определяется не только хроматической (цветочувст­ви­тельной) системой зрительного анализатора, но и вкладом ахроматической системы. Ахроматические нейроны образуют локальный анализатор, детек­тирующий интенсивность стимулов. Первые сведения об этой системе можно найти в работах Р. Юнга, показавшего, что яркость и темнота в нервной сис­теме кодируются двумя независимо работающими каналами: нейронами В, измеряющими яркость, и нейронами В, оценивающими темноту. Существова­ние нейронов-детекторов интенсивности света было подтверждено позже, когда в зрительной коре кролика были найдены клетки, селективно реаги­рующие на очень узкий диапазон интенсивности света.


2.3.Векторная модель управления двигательными и

вегетативными реак­циями

Согласно представлению о векторном кодировании информации в ней­ронных сетях реализацию двигательного акта или ее фрагмента можно опи­сать следующим образом, обратившись к концептуальной рефлекторной дуге (см. Приложение 1, рис.2). Исполнительная ее часть представлена команд­ным нейроном или полем командных нейронов. Возбуждение командного нейрона воздейст­вует на ансамбль премоторных нейронов и порождает в них управляющий вектор возбуждения, которому соответствует определенный паттерн возбуж­денных мотонейронов, определяющий внешнюю реакцию. Поле командных нейронов обеспечивает сложный набор запрограммирован­ных реакций. Это достигается тем, что каждый из командных нейронов по­очередно может воз­действовать на ансамбль премоторных нейронов, создавая в них специфиче­ские управляющие векторы возбуждения, которые и определяют разные внешние реакции. Все разнообразие реакций, таким образом, можно пред­ставить в пространстве, размерность которого опреде­ляется числом премо­торных нейронов, возбуждение последних образуют управляющие векторы.

Структура концептуальной рефлекторной дуги включает блок рецепто­ров, выделяющих определенную категорию входных сигналов. Второй блок - предетекторы, трансформирующие сигналы рецепторов в форму, эффек­тив­ную для селективного возбуждения детекторов, образующих карту ото­бра­жения сигналов. Все нейроны-детекторы проецируются на командные нейроны параллельно. Имеется блок модулирующих нейронов, которые ха­рактеризуются тем, что они не включены непосредственно в цепочку пере­дачи информации от рецепторов на входе к эффекторам на выходе. Образуя «синапсы на синапсах», они модулируют прохождение информации. Модули­рующие нейроны можно разделить на локальные, оперирующие в пределах рефлекторной дуги одного рефлекса, и генерализованные, охватывающие своим влиянием рефлекторных дуг и тем самым определяющие общий уро­вень функционального состояния. Локальные модулирующие нейроны, уси­ливая или ослабляя синаптические входы на командных нейронах перерас­пределяют приоритеты реакций, за которые эти командные нейроны ответст­венны. Модулирующие нейроны действуя через гиппокамп, куда на нейроны «новизны» и «тождества» проецируются детекторные карты.

Реакция командного нейрона определяется скалярным произведением вектора возбуждения и вектора синаптических связей. Когда вектор синап­тических связей в результате обучения совпадает с вектором возбуждения по направлению, скалярное произведение достигает максимума и командный нейрон становится селективно настроенным на условный сигнал. Дифферен­цировочные раздражители вызывают векторы возбуждения, отличающиеся от того, который порождает условный раздражитель. Чем больше это разли­чие, тем меньше вероятность вызова возбуждения командного нейрона. Для выполнения произвольной двигательной реакции требуется участие нейро­нов памяти. На командных нейронах сходятся пути не только от детекторных сетей, но и от нейронов памяти.

Управление двигательными и вегетативными реакциями осуществляется комбинациями возбуждений, генерируемыми командными нейронами, кото­рые действуют независимо друг от друга, хотя, по-видимому, некоторые стандартные паттерны их возбуждений появляются более часто, чем другие.

3. Нейронные сети

Изучение структуры и функций ЦНС привело к появлению новой научной дисциплины - нейроинформатики. По сути, нейроинформатика есть способ решения всевозможных задач с помощью искусственных нейронных сетей, реализованных на компьютере.

Нейронные сети представляют собой новую и весьма перспективную вы­чис­лительную технологию, дающую новые подходы к исследованию дина­миче­ских задач в финансовой области. Первоначально нейронные сети открыли новые возможности в области распознавания образов, затем к этому приба­вились статистические и основанные на методах искусственного ин­теллекта средства поддержки принятия решений и решения задач в сфере финансов.

Способность к моделированию нелинейных процессов, работе с зашум­ленными данными и адаптивность дают возможности применять нейронные сети для решения широкого класса финансовых задач. В последние не­сколько лет на основе нейронные сетей было разработано много программ­ных систем для применения в таких вопросах, как операции на товарном рынке, оценка вероятности банкротства банка, оценка кредитоспособности, контроль за инвестициями, размещение займов.

Приложения нейронные сетей охватывают самые разнообразные об­ласти: распознавание образов, обработка зашумленные данных, дополнение образов, ассоциативный поиск, классификация, оптимизация, прогноз, ди­агностика, обработка сигналов, абстрагирование, управление процессами, сегментация данных, сжатие информации, сложные отображе­ния, моделиро­вание сложных процессов, машинное зрение, распознавание речи.

Несмотря на большое разнообразие вариантов нейронных сетей, все они имеют общие черты. Так, все они, так же как и мозг человека, состоят из большого числа однотипных элементов - нейронов, которые имитируют ней­роны головного мозга, связанных между собой. На рисунке 4 (см. Приложе­ние 1) показана схема нейрона.

Из рисунка видно, что искусственный нейрон, так же как и живой, состоит из синапсов, связывающих входы нейрона с ядром, ядра нейрона, которое осу­ществляет обработку входных сигналов и аксона, который связывает ней­рон с нейронами следующего слоя. Каждый синапс имеет вес, который опре­де­ляет, насколько соответствующий вход нейрона влияет на его состояние.

Со­стояние нейрона определяется по формуле

Реферат на тему Компьютер внутри человека, сопровождаемый презентацией.

где

Реферат на тему Компьютер внутри человека, сопровождаемый презентацией. - число входов нейрона;

Реферат на тему Компьютер внутри человека, сопровождаемый презентацией.- значение i-го входа нейрона;

Реферат на тему Компьютер внутри человека, сопровождаемый презентацией. - вес i-го синапса.

Затем определяется значение аксона нейрона по формуле

Реферат на тему Компьютер внутри человека, сопровождаемый презентацией.

ГРеферат на тему Компьютер внутри человека, сопровождаемый презентацией.де Реферат на тему Компьютер внутри человека, сопровождаемый презентацией. - некоторая функция, которая называется активационной. Наиболее часто в качестве активационной функции используется так называемый сиг­моид, который имеет следующий вид:

4. Настоящий компьютер внутри человека


В предыдущих разделах о компьютере внутри человека говорилось в пере­носном смысле; однако достижения науки дают основания перейти от мета­форы к прямому значению слов.

Израильские ученые создали молекулярный компьютер, который использует ферменты для произведения подсчетов.

Реферат на тему Компьютер внутри человека, сопровождаемый презентацией.Итамар Виллнер, сконструировавший молекулярный калькулятор со своими коллегами в Еврейском университете Иерусалима, считает, что ком­пьютеры, работающие на ферментах, когда-нибудь можно будет вживлять в человече­ский организм и использовать, например, для регулирования вы­броса ле­карств в систему метаболизма.

Ученые создали свой компьютер, используя два фермента - глюкозу де­гидро­геназу (glucose dehydrogenase, GDH) и пероксидаз из хрена (horseradish peroxidase, HRP) - для запуска двух взаимосвязанных химиче­ских реакций. Два химических компонента - перекись водорода и глюкоза - использовались как вводимые значения (А и В). Присутствие каждого из хи­мических веществ соответствовало 1 в двоичном коде, а отсутствие - 0 в двоичном коде. Хими­ческий результат ферментной реакции определялся оп­тически.

Ферментный компьютер использовали для проведения двух фундаменталь­ных логических вычислений, известных как AND (где A и B должны быть равными единице) и XOR (где A и B должны иметь разные зна­чения). Добав­ление еще двух ферментов - глюкозооксидазы (glucose oxidase) и каталазы (catalase) - связало две логические операции, дав воз­можность сложить дво­ичные числа, используя логические функции.

Ферменты уже используют при вычислениях, применяя специально закоди­рованную ДНК. Такие ДНК-компьютеры потенциально способны пре­взойти по скорости и мощности кремниевые компьютеры, поскольку могут осуществ­лять множество параллельных вычислений и помещать огромное количество компонентов в крошечное пространство.


Заключение

Работая над рефератом, я узнала много нового об устройстве центральной нервной системы человека и обнаружила тесную связь между процессами, происходящими внутри человека и внутри машины. Несомненно, изучение устройства ЦНС и мозга открывает перед человечеством огромные перспек­тивы. Нейронные сети уже сейчас решают задачи, непосильные для искусст­венного интеллекта. Нейрокомпьютеры особенно эффективны там, где нужен аналог человеческой интуиции для распознавания образов (узнавания лиц, чтения рукописных текстов), подготовки аналитических прогнозов, перевода с одного естественного языка на другой и т.п. Именно для таких задач обычно трудно сочинить явный алгоритм. В ближайшем будущем возможно создание электронных носителей, сопоставимых по ёмкости с человеческим мозгом. Но для того, чтобы осуществить все смелые замыслы ученых, необ­ходима прочная теоретическая база. А обеспечить её поможет молодая, стремительно развивающаяся наука, своеобразный союз биологии и инфор­матики - биоинформатика.

Список литературы


  1. Энциклопедия для детей. Том 22. Информатика. М.: Аванта+, 2003.

  2. Энциклопедия для детей. Том 18. Человек. Ч. 1.Происхождение и природа че­ловека. Как работает тело. Искусство быть здоровым. М.: Аванта+, 2001.

  3. Энциклопедия для детей. Том 18. Человек. Ч. 2. Архитектура души. Психоло­гия личности. Мир взаимоотношений. Психотерапия. М.: Аванта+, 2002.

  4. Данилова Н.Н. Психофизиология: Учебник для вузов.- М.: Аспект Пресс, 2001

  5. Марцинковская Т. Д. История психологии: Учеб. пособие для студ. высш. учеб. заведений.- М.: Издательский центр "Академия", 2001

  6. NewScientist.com news service; Angewandte Chemie International Edition (vol. 45, p. 1572)









Приложение 1

Реферат на тему Компьютер внутри человека, сопровождаемый презентацией.






рис.1. Нервная система человека - центральная, вегетативная и перифери­ческая

Реферат на тему Компьютер внутри человека, сопровождаемый презентацией.




рис.2. Образование рефлекторной дуги



Реферат на тему Компьютер внутри человека, сопровождаемый презентацией.








рис.3. Нейрон с множеством дендритов, получающий информацию через синаптический контакт с другим нейроном.

Реферат на тему Компьютер внутри человека, сопровождаемый презентацией.



рис.4. Строение искусственного нейрона


Приложение 2


Краткий словарь терминов и понятий

Аксон - отросток нервной клетки (нейрона), проводящий нервные импульсы от тела клетки к иннервируемым органам или др. нервным клеткам. Пучки аксонов образуют нервы.

Гиппокамп - структура, расположенная в глубинных слоях доли височной го­ловного мозга.

Градиент - вектор, показывающий направление наискорейшего изменения некото­рой величины, значение которой меняется от одной точки пространства к другой.

Дендрит - ветвящийся цитоплазматический отросток нервной клетки, проводящий нервные импульсы к телу клетки.

Кортиевый орган - рецепторный аппарат слухового анализатора.

ЛКТ - латеральное коленчатое тело.

Локус - конкретный участок ДНК, отличающийся каким-либо свойством.

Нейрон - нервная клетка, состоящая из тела и отходящих от него отростков - отно­сительно коротких дендритов и длинного аксона.

Паттерн - пространственно-временная картина развития какого-то процесса.

Рецептивное поле - периферическая область, раздражение которой оказывает влияние на разряд данного нейрона.

Рецепторы - окончания чувствительных нервных волокон или специализированные клетки (сетчатки глаза, внутреннего уха и др.), преобразующие раздражения, вос­принимаемые извне (экстерорецепторы) или из внутренней среды организма (инте­рорецепторы) в нервное возбуждение, передаваемое в центральную нервную систему.

Синапс - структура, которая передает сигналы от нейрона к соседнему (или к дру­гой клетке).

Сома - 1) тело, туловище; 2) совокупность всех клеток организма, за исключением репродуктивных клеток.

Соматосенсорная кора - область коры больших полушарий мозга, где представ­лены афферентные проекции частей тела.

Таламус - основная часть промежуточного мозга. Главный подкорковый центр, на­правляющий импульсы всех видов чувствительности (температурный, болевой и др.) к стволу мозга, подкорковым узлам и коре больших полушарий.


© 2010-2022