Конференция по химии «Химики мирового значения»

Раздел Химия
Класс -
Тип Другие методич. материалы
Автор
Дата
Формат doc
Изображения Нет
For-Teacher.ru - все для учителя
Поделитесь с коллегами:

ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

МОСКОВСКОЙ ОБЛАСТИ

«РАМЕНСКИЙ КОЛЛЕДЖ»



Конференция

по учебной дисциплине «Химия»

«Личность ученого как фактор формирования естественно-научных знаний»


группа 2Пв/15 по профессии 19.01.17 «Повар, кондитер»

преподаватель Капин Артем Витальевич

дата проведения: 15.03.2016






















г. Раменское

2016г.

Задачи:

- Активизировать знания детей через нестандартные формы работы;

- Научить правильно, оценивать роль ученых в нашей жизни;

- Привлечь внимание к информации о важности развития химии как науки;

- Расширить знания о химии в целом.

Результаты данного мероприятия оцениваются по соответствию активности участия в мероприятии и степенью подготовки к выступлению обучающихся.

Ход мероприятия

Учитель:

Добрый день, дорогие ребята! Химия - одна из важнейших областей естествознания, сыгравшая огромную роль в создании современной научной картины мира. Обычно ее определяют как науку, которая изучает вещества и их превращения. Химическими превращениями являются такие, в результате которых образуются новые химические индивидуумы со своими характерными свойствами. Все химические превращения обязательно связаны с перестройкой внешних оболочек атомов элементов, участвующих в реакциях, тогда как внутренние оболочки и атомное ядро остаются незатронутыми.

Хотя с различными химическими превращениями человек имел дело еще в древние времена, становление химии как самостоятельной науки - со своими целями и задачами, с собственным арсеналом понятий и терминов - фактически начало происходить во второй половине XVIII в.

Такие имена ученых-химиков как Август Кекуле, Адольф фон Байер, Альфред Вернер Антуан Лоран Лавуазье, Александр Михайлович Бутлеров превратили химию в строгую научную дисциплину.

В честь этой дисциплины в году выделили специальный день. День химика относится к числу не только самых известных и шумных праздников, но и обладает множеством традиций, которые каждое поколение не только сохраняет, но и преумножает. Например, каждый год День химика проводится под символом нового элемента таблицы Менделеева, а самому первому празднику был присвоен номер 1 - водород.

День химика - праздник, объединяющий и студентов, и аспирантов, и преподавателей, и выпускников всех поколений. Этот день отмечается всегда ярко и весело. Выпускники химических факультетов неизменно востребованы и в науке, и в промышленности, и в бизнесе.

Именно химикам женщины должны быть благодарны за их активное участие в создании необычных стиральных порошков, новых серий косметики и нервущихся колготок. Именно химикам мужчины должны быть благодарны за создание новых сортов автомобильных масел с запахом лимона, пленяющего всех не страдающих насморком женщин.

Выступление учащегося:

Август Кекуле

Август Кекуле родился 7 сентября 1829 года в Германии. Мальчик оказался поразительно одаренным. Еще в школе он мог свободно говорить на четырех языках, обладал литературными способностями. По проекту гимназиста Кекуле было построено три дома! Однако за несколько недель до окончания Августом школы умер отец. После смерти отца вопрос об овладении доходной профессией встал с особой остротой. По совету родных Август уехал в Гиссен, где уже год учился в университете его брат Эмиль.

В университете Август стал изучать геометрию, математику, черчение, рисование. Он обладал необыкновенным даром красноречия, умел увлекательно рассказывать, умел тактично дать нужный совет и вскоре стал всеобщим любимцем.

В университете Август впервые услышал имя Юстуса Либиха Студенты произносили его почтительно, с восторгом. Август Кекуле решил посещать лекции прославленного ученого, хотя и не интересовался химией.

Весной 1848 года Кекуле впервые вошел в лабораторию Либиха. Профессор с мировым именем произвел на него неизгладимое впечатление. Уже после первой лекции Август решил, что будет постоянно ходить на занятия Либиха, и с каждым днем химия увлекала его все больше и больше. Вскоре, забросив архитектуру, он твердо решил, что будет заниматься химией.

Но, приехав на летние каникулы, по настоянию родных, Август был вынужден остаться в Дармштадте и поступить в Высшее ремесленное Училище. И все же, убедившись, что Август не намерен отказаться от своего выбора, родные согласились отпустить его снова в Гиссен. Весной 1849 года он продолжил свои занятия по аналитической химии.

Его первая научная работа об амилсерной кислоте получила высокую оценку профессора Билля. За нее в июне 1852 года Ученый совет университета присудил Кекуле степень доктора химии.

После окончания университета молодой ученый некоторое время работал в Швейцарии у Адольфа фон Планта, а затем переехал в Лондон, где ему рекомендовали лабораторию Джона Стенхауза.

Многочисленные и продолжительные анализы утомляли его и докучали своим однообразием. Удовлетворение после напряженного дня он находил в вечерних беседах с коллегами-соотечественниками. Теоретические и философские проблемы органической химии были основным предметом их суждений. Такие понятия, как «соединительный вес», «атомный вес», «молекула», вызывали еще много споров. Теория типов, созданная Жераром, доказывала, что замещение одного элемента другим имеет место и в тех случаях, когда в реакции участвует элемент, весовое количество которого в два, три или четыре раза больше соединительного веса. Франкланд ввел понятие «атомность», то, что теперь называется валентностью.

Идеи Франкланда развил Уильям Одлинг, предложивший валентность элементов обозначать черточкой у химического символа.

Вопрос о валентности чрезвычайно занимал Кекуле, и в его сознании постепенно назревали идеи экспериментальной проверки некоторых теоретических положений, которые он решил изложить в статье. В ней Кекуле сделал попытку обобщить и расширить теорию типов, разработанную Жераром. Кекуле сравнивал свои выводы с главными положениями теории Одлинга. Понятие «валентность» атомов можно использовать как основу новой теории! Атомы соединяются по какой-то простой закономерности. Он представил себе атомы элементов в виде маленьких сфер, которые отличаются друг от друга только по величине.

К сожалению, напряженная и утомительная работа в лаборатории Стенхауза заполняла почти все время, и Кекуле не имел возможности обдумать и проверить опытным путем мысли, которые не давали ему покоя. Нужно было искать другую работу. Весной 1855 года Кекуле покинул Англию и вернулся в Дармштадт. Он посетил университеты Берлина, Гиссена, Геттингена и Гейдельберга, но вакантных мест там не было. Тогда он решил просить разрешения определиться в качестве приват-доцента в Гейдельберге. Роберт Бунзен, профессор химии Гейдельбергского университета, одобрил эту идею. По его мнению, лекции Кекуле должны были привлечь слушателей, так как многие студенты интересовались органической химией. Получив разрешение, ученый снял помещение в большом трехэтажном доме, принадлежавшем торговцу мукой. Одну комнату отвел под аудиторию, а в другой устроил лабораторию. Места было мало, в лаборатории поместилось всего лишь два рабочих стола, но Кекуле был доволен.

Вначале лекции Кекуле по органической химии посещали только шесть человек, но постепенно аудитория заполнилась, и доходы Кекуле возросли - каждый слушатель вносил определенную сумму.

Теперь Кекуле все свободное время мог посвятить исследовательской работе. Свое внимание он сосредоточил на гремучей кислоте и ее солях, строение которых оставалось еще не выясненным.

Ему удалось расширить и дополнить теорию типов. К основным Кекуле добавил еще один - тип метана. Свои выводы он изложил в статье «О конституции гремучей ртути». Увы, ученый не располагал средствами, чтобы снова приняться за опыты с гремучей кислотой. Он решил вплотную заняться теоретическими проблемами. В статье «О теории многоатомных радикалов» Кекуле сформулировал основные положения своей теории валентности. Он обобщил выводы Франкланда, Уильямсона, Одлинга и разработал вопрос о соединительной способности атомов. Число атомов одного элемента, связанных с одним атомом другого элемента, зависит от валентности, то есть от величины сродства составных частей. В этом смысле элементы делятся на три группы: одновалентные, двухвалентные и трехвалентные.

В этой же статье Кекуле отмечал, что углерод занимает особое место среди всех элементов. В органических соединениях его валентность равна четырем, так как он соединяется с четырьмя эквивалентами водорода или хлора. Таким образом, органические соединения углерода требуют особого изучения.

В статье «О составе и превращениях химических соединений и о химической природе углерода» Кекуле обосновал четырехвалентность углерода в органических соединениях. Он также отмечал, что попытка Жерара подвести все химические реакции под один общий принцип - двойной обмен - не оправдана, так как существуют реакции прямого соединения нескольких молекул в одну.

Рассматривая состав органических радикалов в новом свете, он писал:

«Относительно веществ, содержащих несколько атомов углерода, нужно принять, что атомы других элементов задерживаются в органическом соединении за счет сродства (валентности) углерода; сами углеродные атомы также соединяются друг с другом, причем часть сродства (валентности) одного углеродного атома насыщается таким же количеством сродства (валентности) другого углеродного атома».

Это были совершенно новые идеи, идеи об углеродных цепях. Это была революция в теории органических соединений. Это были первые шаги в теории структуры органических соединений.

А.М. Бутлеров благодаря критическому разбору работ Кекуле и Купера сумел заложить основные положения теории химического строения органических соединений, которая была создана русским ученым спустя несколько лет.

Весной 1858 года умер Жозеф Мореска, преподаватель химии Гентского университета (Голландия). Было решено пригласить на вакантную должность химика из Германии. В конце 1858 года Кекуле вместе со своим помощником Адольфом Байером уехал в Гент.

Здесь ученый продолжил исследовательскую работу. Его по-прежнему занимал вопрос об углеродных цепях. Он считал, что при химических реакциях углеродная цепь остается неизменной. Настало время доказать это опытным путем. Постепенно набирая факты, он подтвердил свою точку зрения.

Во время строительства химической лаборатории в Генте, Кекуле познакомился с директором завода светильного газа. Господин Дрори, англичанин по происхождению, лично руководил монтажными работами. Он часто заходил к Кекуле отвести душу - поговорить с ним на родном языке, а ученый владел английским в совершенстве. Постепенно он сблизился с семьей директора. Дочь директора, красавица Стефания, завладела сердцем Августа.

Девушка получила прекрасное образование. Красота ее нежного, тонкого лица, гибкий и острый ум покорили Кекуле. Молодые люди полюбили друг друга с первого взгляда. Господин Дрори благосклонно отнесся к предложению Кекуле, но посоветовал отложить свадьбу на лето следующего года, чтобы молодожены смогли во время летнего отпуска Кекуле совершить свадебное путешествие. Кроме того, в ближайшее время Кекуле должен был ехать на съезд естествоиспытателей в Шпейер.

На одном из заседаний этого съезда 19 сентября 1861 года Бутлеров выступил с докладом «О химическом строении веществ». Кекуле весьма скептически отнесся к новым структурным формулам, которые, по мнению Бутлерова, выражали не только расположение атомов в молекуле, но и показывали, каково их взаимное влияние. Разочаровавшись в теории типов, Кекуле не принимал и новую теорию Бутлерова.

Вернувшись в Гент, он продолжил исследования Фурмановой и малеиновых кислот. Не было сомнений, что эти кислоты - изомерные соединения. Но как объяснить их изомерию. Немало бессонных ночей провел ученый, но объяснения найти пока не мог.

Разрядкой огромного душевного напряжения явилась долгожданная свадьба, которая состоялась летом 1862 года. Сколько радости и счастья принесла ему Стефания! Силы его будто удвоились - вернувшись из свадебного путешествия, он работал с еще большим энтузиазмом: проводил опыты с ненасыщенными кислотами, заканчивал рукопись учебника органической химии. Но этот счастливый период оказался недолгим: грядущее материнство Стефании принесло тревогу за ее здоровье. Кекуле был очень обеспокоен состоянием жены. И самые худшие опасения подтвердились - рождение сына стоило жизни матери. Кекуле был безутешен в горе.

Кекуле в поиске утешения в работе принялся за изучение структуры бензола и его производных. Атомы в молекуле взаимно влияют друг на друга, и свойства молекулы зависят от расположения атомов. Кекуле представлял себе углеродные цепи в виде змей. Они извивались, принимали самые различные положения, отдавали или присоединяли атомы, превращаясь в новые соединения. Он был близок к разгадке, и все-таки представить структуру бензола ему не удавалось. Как расположены шесть углеродных и шесть водородных атомов в его молекуле? Кекуле делал десятки предположений, но, поразмыслив, отбрасывал.

Есть несколько версий, как открыл Кекуле формулу бензола. По одной из них она ему приснилась. Проснувшись, ученый поспешно набросал на листке бумаги новую форму цепи. Так появилась первая кольцевая формула бензола...

Идея бензольного кольца дала новый толчок для экспериментальных и теоретических исследований. Статью «О строении ароматических соединений» Кекуле послал Вюрцу, который представил ее Парижской академии наук. Статья была напечатана в «Бюллетене Академии» в январе 1865 года. Наука обогатилась еще одной новой, исключительно плодотворной теорией строения ароматических соединений.

Дальнейшие исследования в этой области привели к открытию различных изомерных соединений, многие ученые стали проводить опыты по выяснению строения ароматических веществ, предлагали другие формулы бензола... Но теория Кекуле оказалась наиболее правомерной и вскоре утвердилась повсеместно. На основе своей теории Кекуле предсказал возможность существования трех изомерных соединений (орто, мета и пара) при наличии двух заместителей в бензольном кольце. Перед учеными открылось еще одно поле деятельности, появилась возможность синтеза новых веществ.

В 1867 году Кекуле был назначен директором нового химического института Боннского университета. В лаборатории вместе с Кекуле работали О. Баллах, Л. Кляйзен, Г. Шультц, Р. Аншютц и другие. Многие из них впоследствии стали известными учеными.

Слава Кекуле как одного из самых выдающихся ученых была общепризнанной. Его избрали почетным членом многие академии мира, с его мнением считались не только ученые, но и промышленники.

До самого преклонного возраста Кекуле продолжал работать с неослабевающей энергией: проводил опыты, читал доклады.

Весной 1896 года в Берлине вспыхнула эпидемия гриппа. Болезнь сильно подорвала здоровье Кекуле, давно страдавшего хроническим бронхитом. 13 июня 1896 года великий ученый скончался.

Выступление учащегося:

Адольф фон Байер

Немецкий химик Иоганн Фридрих Вильгельм Адольф фон Байер родился в Берлине 31 октября 1835 года. Он был старшим из пяти детей Иоганна Якоба Байера и Евгении (Хитциг) Байер. Отец Байера, офицер прусской армии, был автором опубликованных работ по географии и преломлению света в атмосфере, а мать - дочерью известного юриста и историка Юлиуса Эдуарда Хитцига. Счастливые дни детства Адольфа Байера были омрачены большим несчастьем - во время родов умерла мать. Старший из детей, Адольф, сильнее других чувствовал тяжелую утрату.

Отец, специалист по геодезии, большую часть года проводил в путешествиях. По возвращении он некоторое время жил дома, а потом вместе с Адольфом отправлялся в Мюльгейм. Каждый раз отец привозил книги, и Адольф запомнил одну из них, потому что именно с нее начался интерес к химии.

В гимназии учитель Шельбах, отличный математик и физик, преподававший также и химию, активно поддерживал интерес Адольфа к физике и химии. Мальчик учился с исключительным усердием, поэтому Шельбах сделал его своим помощником в химической лаборатории. Адольф с удовольствием проводил демонстрации опытов в аудитории, но еще важнее для его становления как химика имели опыты, которые он проводил в своей домашней лаборатории. Прочитав руководство по органической химии Вёлера, Байер еще больше увлекся интересной, загадочной и малоизученной наукой химией. В двенадцатилетнем возрасте он сделал свое первое химическое открытие. Это была новая двойная соль - карбонат меди и натрия.

Окончив гимназию Фридриха Вильгельма, Байер в 1853 году поступил в Берлинский университет, где в течение двух последующих лет занимался изучением математики и физики.

После окончания третьего семестра Байер был призван в армию. Целый год проходил службу юноша в восьмом берлинском полку. Для него это было тяжелое время, ведь за год ему не удалось даже открыть книгу.

Но, наконец, отслужив положенный срок, Байер вернулся домой и встал перед необходимостью решать, чем заниматься дальше.

В конце концов, он поступил в Гейдельбергский университет и начал работу в лаборатории профессора Бунзена. Обучение в университете не ограничивалось чтением лекций, уже с начала учебного года студенты готовились к исследовательской работе. В Гейдельберге Байер сосредоточил свое внимание на физической химии. Но после опубликования в 1857 году статьи о хлорметане он так увлекся органической химией, что, начиная со следующего года, стал работать у занимавшегося структурной химией Фридриха Августа Кекуле в его лаборатории в Гейдельберге.

Лаборатория была тесной и скудно оборудованной. Однако Байер нашел в лице Кекуле превосходного учителя, который отлично владел методикой экспериментальной работы по органической химии, а еще лучше теорией. Под руководством Кекуле исследования пошли быстро и весьма успешно. Взяв в качестве исходного вещества какодиловую кислоту, Байер за короткое время синтезировал новые, неизвестные до того времени соединения - метилированные хлориды мышьяка, за которые ему позднее была присуждена докторская степень.

С 1858 года в течение двух лет он вместе с Кекуле работал в Гентском университете в Бельгии. В Генте у Байера не было самостоятельного заработка, он жил на деньги, которые ежемесячно получал от отца. Известный ученый-геодезист, теперь уже генерал Байер, мог позволить себе содержать сына, но отец все настойчивее советовал Адольфу самому подумать о своем будущем.

В начале 1860 года Байер приехал в Берлин. Экзамен на приват-доцента он выдержал блестяще и начал подготовку к предстоящим лекциям. Для экспериментальной работы в берлинских лабораториях не было никаких условий. Оборудовать собственную лабораторию у Байера не было средств. Оставалось только одно - решать теоретические проблемы.

После смерти деда в доме Байеров, как и прежде, собирались известные ученые, писатели, искусствоведы. На этих вечерах нередко бывал и друг старого Байера, тайный советник Бендеманн, который почти всегда приходил со своей дочерью Адельгейдой (Лидией). Она подружилась с сестрами Адольфа. А когда Адольф приехал в Берлин, красивая, образованная подруга сестер сразу же привлекла его внимание. Однако, живущий на средства отца, Байер не мог и помышлять о браке. Нужно было как можно скорее найти работу с постоянным заработком. И счастье улыбнулось ему. В I860 году в ремесленном училище, будущем Высшем техническом училище, была введена новая дисциплина - органическая химия.

Байер согласился на должность преподавателя органической химии, хотя жалованье ему полагалось небольшое и половину его нужно было отдавать ассистенту, который совсем ничего не получал.

Под влиянием увлеченности Кекуле Байер начал сначала исследовать мочевую кислоту, а начиная с 1865 года структурный состав индиго, высоко ценимого в промышленности синего красителя, названного именем растения, из которого его получают. Еще в 1841 году французский химик Огюст Лоран в ходе исследований сложного строения этого вещества выделил изатин, растворимое в воде кристаллическое соединение. Продолжая опыты, начатые Лораном, Байер в 1866 году получил изатин, использовав новую технологию восстановления индиго путем нагревания его с измельченным цинком. Примененный Байером способ позволил проводить более глубокий структурный анализ, чем процесс окисления, осуществленный Лораном.

Престиж его лаборатории чрезвычайно возрос. Молодым ученым интересовались не только исследователи, но и промышленники. Доходы Байера значительно увеличились. Теперь можно было подумать о семейной жизни.

8 августа 1868 года состоялась свадьба Адельгейды Бондеманн и Адольфа Байера. У них родились дочь и три сына, один из которых, Франц, умер в 1881 году. Известная своей деликатностью, тактом и изящными манерами, госпожа Байер пользовалась всеобщей любовью и уважением. Кроме молодых практикантов ее мужа, госпожа Байер обычно приглашала и маститых ученых, писателей, художников, музыкантов. Молодая жена не только умело взяла на себя заботы о хозяйстве, но и помогала мужу вести переписку. Байер не любил писать. Даже научные статьи, в которых он подводил итоги своих исследований, Байер писал с большой неохотой.

Анализируя обратный процесс, получение индиго путем окисления изатина, Байер в 1870 году впервые сумел синтезировать индиго, сделав, таким образом, возможным его промышленное производство. После того как в 1872 году Байер переехал в Страсбург и занял место профессора химии в Страсбургском университете, он приступил к изучению реакций конденсации, в результате которых высвобождается вода. В ходе проведения реакций конденсации таких групп соединений, как альдегиды и фенолы, ему и его коллегам удалось выделить несколько имеющих важное значение красящих веществ, в частности пигменты эозина, которые он впоследствии синтезировал.

Здесь у Байера появилось много друзей. Иногда после работы сотрудники лаборатории собирались на квартире ученого, благо дом, в котором жил Байер, находился рядом с лабораторией. За большим и шумным столом рассказывались веселые истории, шутки, пелись песни. Адельгейда любила эти веселые компании и умела оживлять их своим искусством отличной хозяйки. Эти молодые, влюбленные в науку люди сплотились в одну большую семью, в центре которой был профессор Байер.

Три года прожил ученый в Страсбурге. В 1875 году, после смерти Юстуса фон Либиха, Байер стал преемником этого известного химика-органика, заняв должность профессора химии в Мюнхенском университете. Здесь в течение более чем четырех десятилетий он был центром притяжения множества одаренных студентов. Более пятидесяти из них стали впоследствии университетскими преподавателями.

Вернувшись к изучению точной химической структуры индиго, Байер в 1883 году объявил о результатах своих исследований. Это соединение, по его словам, состоит из двух связанных «стержневых» молекул (их он назвал индолом). В течение сорока лет созданная Байером модель оставалась неизменной. Она была пересмотрена только с появлением более совершенной технологии.

Изучение красителей привело Байера к исследованию бензола - углеводорода, в молекуле которого 6 атомов углерода образуют кольцо Относительно природы связей между этими атомами углерода и расположения атомов водорода внутри молекулярного кольца существовало много соперничавших между собой теорий. Байер, который по своему складу был скорее химиком-экпериментатором, нежели теоретиком, не принял ни одну из существовавших в то время теорий, а выдвинул свою собственную - теорию «напряжения». В ней ученый утверждал, что из-за присутствия других атомов в молекуле связи между атомами углерода находятся под напряжением и что это напряжение определяет не только форму молекулы, но также и ее стабильность. И хотя эта теория получила сегодня несколько осовремененную трактовку, ее суть, верно схваченная Байером, осталась неизменной. Исследования бензола привели Байера также к

пониманию того, что структура молекул бензольной группы ароматических соединений, называемых гидроароматическими, представляет собой нечто среднее между кольцевым образованием и структурой молекулы алифатических углеводородов (без кольца). Это сделанное им открытие не только указывало на взаимосвязь между данными тремя типами молекул, но и открывало новые возможности для их изучения.

В 1885 году в день пятидесятилетия Байера в знак признания его заслуг перед Германией ученому был пожалован наследственный титул, давший право ставить частицу «фон» перед фамилией.

...Годы шли незаметно. Старшая дочь Евгения давно вышла замуж за профессора Оскара Пилоти. Сыновья, Ганс и Отто, тоже нашли свою дорогу в жизни. Появились внуки...

Шел 1905 год. На чествование семидесятилетия выдающегося ученого в Мюнхен съехались десятки учеников Байера, теперь уже известных ученых. Торжественная церемония, обед в большом зале. Со всех концов мира приходили поздравления. В дни празднования было получено сообщение о том, что за заслуги в области органической химии Байеру присуждена Нобелевская премия по химии «за заслуги в развитии органической химии и химической промышленности благодаря работам по органическим красителям и гидроароматическим соединениям».

Поскольку в это время ученый был болен и не мог лично присутствовать на церемонии вручения премии, его представлял германский посол.

Байер не произнес Нобелевской лекции. Но еще в 1900 году, в статье, посвященной истории синтеза индиго, он сказал: «Наконец-то у меня в руках основное вещество для синтеза индиго, и я испытываю такую же радость, какую, вероятно, испытывал Эмиль Фишер, когда он после пятнадцати лет работы синтезировал пурин - исходное вещество для получения мочевой кислоты».

Став нобелевским лауреатом, Байер продолжил исследования молекулярной структуры. Его работы по кислородным соединениям привели к открытиям, касающимся четырехвалентности и основности кислорода. Ученый также занимался изучением связи между молекулярной структурой и оптическими свойствами веществ, в частности цветом.

Байер поддерживал личные контакты со многими выдающимися учеными Европы. Почти не ведя переписки, он всегда находил время посетить своих коллег, побеседовать с ними, узнать об их достижениях, рассказать о своих. Его уважали и повсюду встречали как дорогого гостя.

Профессорские кафедры во многих городах Европы занимали его ученики. Они сохраняли привязанность к старому учителю и, приезжая в Мюнхен, прежде всего, навещали знакомый дом.

В число наград, полученных Байером, входила медаль Дэви, присужденная Лондонским королевским обществом. Он был членом Берлинской академии наук и Германского химического общества.

Последние годы жизни ученого были омрачены начавшейся мировой войной. Народ Германии нес на плечах все тяготы кровавой бойни, и Байер тяжело переживал это. Он стал быстро дряхлеть, часто задыхался от сухого кашля, а вскоре и совсем слег. 20 августа 1917 года Адольф Байер умер в своем загородном доме на Штарнбергском озере, неподалеку от Мюнхена.

Выступление учащегося:

Александр Михайлович Бутлеров

Александр Бутлеров родился в 1828 году в Бутлеровке - небольшой деревушке неподалеку от Казани, где находилось имение отца. Матери своей Саша не помнил, она умерла через одиннадцать дней после его рождения. Воспитанный отцом, человеком образованным, Саша хотел во всем походить на него.

Сначала он ходил в пансион, а затем поступил в Первую казанскую гимназию, учителя которой были очень опытные, хорошо подготовленные, они умели заинтересовать учеников. Саша легко усваивал материал, так как с раннего детства его приучили к систематической работе. Особенно привлекали его естественные науки.

После окончания гимназии, вопреки желанию отца, Саша поступил на естественнонаучное отделение Казанского университета, правда, пока только как слушатель, так как он был еще несовершеннолетним. Лишь в следующем, 1845 году, когда юноше исполнилось 17 лет, фамилия Бутлерова появилась в списке принятых на первый курс.

В 1846 году Александр заболел тифом и чудом выжил, а вот заразившийся от него отец скончался. Осенью вместе с тетей они переехали в Казань. Постепенно молодость брала свое, к Саше вернулись и здоровье, и веселье. Молодой Бутлеров занимался с исключительным усердием, но, к своему удивлению, заметил, что самое большое удовольствие доставляют ему лекции по химии. Лекции профессора Клауса его не удовлетворяли, и он стал регулярно посещать лекции Николая Николаевича Зинина, которые читались для студентов физико-математического отделения. Очень скоро Зинин, наблюдая за Александром во время лабораторных работ, заметил, что этот светловолосый студент необыкновенно одарен и может стать хорошим исследователем.

Бутлеров занимался успешно, но все чаще задумывался над своим будущим, не зная, что ему, в конце концов, выбрать. Заняться биологией? Так много неизученного в этой области! Но, с другой стороны, разве отсутствие ясного представления об органических реакциях не предлагает бесконечные возможности для исследований?

Чтобы получить ученую степень кандидата, Бутлеров должен был представить диссертацию по окончании университета. К этому времени Зинин уехал из Казани в Петербург и ему не оставалось ничего иного, как заняться естественными науками. Для кандидатской работы Бутлеров подготовил статью «Дневные бабочки Волго-Уральской фауны». Однако обстоятельства сложились так, что Александру все-таки пришлось вернуться к химии.

После утверждения Советом его ученой степени Бутлеров остался работать в университете. Единственный профессор химии Клаус не мог все занятия вести сам и нуждался в помощнике. Им стал Бутлеров. Осенью 1850 года Бутлеров сдал экзамены на ученую степень магистра химии и немедленно приступил к докторской диссертации «Об эфирных маслах», которую защитил в начале следующего года. Параллельно с подготовкой лекций Бутлеров занялся подробным изучением истории химической науки. Молодой ученый усиленно работал и в своем кабинете, и в лаборатории, и дома.

По мнению его теток, их старая квартира была неудобной, поэтому они сняли другую, более просторную, у Софьи Тимофеевны Аксаковой, женщины энергичной и решительной. Она приняла Бутлерова с материнской заботой, видя в нем подходящую партию для дочери. Несмотря на постоянную занятость в университете, Александр Михайлович оставался веселым и общительным человеком. Он отнюдь не отличался пресловутой «профессорской рассеянностью», а приветливая улыбка и непринужденность в обращении делали его желанным гостем повсюду Софья Тимофеевна с удовлетворением замечала, что молодой ученый был явно неравнодушен к Наденьке. Девушка и в самом деле была хороша, высокий умный лоб, большие блестящие глаза, строгие правильные черты лица и какое-то особое обаяние. Молодые люди стали добрыми друзьями, а со временем начали все чаще ощущать необходимость быть вместе, делиться самыми сокровенными мыслями. Вскоре Надежда Михайловна Глумилина - племянница писателя С.Т. Аксакова стала женой Александра Михайловича.

Бутлеров был известен не только как незаурядный химик, но и как талантливый ботаник. Он проводил разнообразные опыты в своих оранжереях в Казани и в Бутлеровке, писал статьи по проблемам садоводства, цветоводства и земледелия. С редкостным терпением и любовью наблюдал он за развитием нежных камелий, пышных роз, выводил новые сорта цветов. Уходя домой, он никогда не забывал срезать лучшие цветы для жены.

4 июня 1854 года Бутлеров получил подтверждение о присуждении ему ученой степени доктора химии и физики. События разворачивались с невероятной быстротой. Сразу же после получения докторской степени Бутлеров был назначен исполняющим обязанности профессора химии Казанского университета. В начале 1857 года он стал уже профессором, а детом того же года получил разрешение на заграничную командировку.

Бутлеров прибыл в Берлин в конце лета. Затем он продолжил поездку по Германии, Швейцарии, Италии и Франции. Конечной целью его путешествия был Париж - мировой центр химической науки того времени. Его влекла, прежде всего, встреча с Адольфом Вюрцем. Бутлеров работал в лаборатории Вюрца два месяца. Именно здесь он начал свои экспериментальные исследования, которые в течение последующих двадцати лет увенчались открытиями десятков новых веществ и реакций. Многочисленные образцовые синтезы Бутлерова этанола и этилена, динзобутилена, третичных спиртов, уротропина, триоксиметилена, полимеризации этиленовых углеводородов лежат у истоков ряда отраслей промышленности и, таким образом, оказали на нее самое непосредственное стимулирующее влияние.

Занимаясь изучением углеводородов, Бутлеров понял, что они представляют собой совершенно особый класс химических веществ. Анализируя их строение и свойства, ученый заметил, что здесь существует строгая закономерность. Она и легла в основу созданной им теории химического строения.

Его доклад в Парижской академии наук вызвал всеобщий интерес и оживленные прения. Бутлеров говорил:

«Способность атомов соединяться друг с другом различна. Особенно интересен в этом отношении углерод, который, по мнению Августа Кекуле, является четырехвалентным. Если представить валентность в виде щупальцев, с помощью которых атомы связываются между собой, нельзя не заметить, что способ связи отражается на свойствах соответствующих соединений.

Может быть, настало время, когда наши исследования должны стать основой новой теории химического строения веществ. Эта теория будет отличаться точностью математических законов и позволит предвидеть свойства органических соединений». Подобных мыслей никто до сих пор не высказывал.

Через несколько лет, во время второй заграничной командировки, Бутлеров представил на обсуждение созданную им теорию. Сообщение он сделал на 36-м съезде немецких естествоиспытателей и врачей в Шпейере.

Съезд состоялся в сентябре 1861 года. Он выступил с докладом перед химической секцией. Тема носила более чем скромное название: «Нечто о химическом строении тел».

Бутлеров говорил просто и ясно. Не вдаваясь в ненужные подробности, он познакомил аудиторию с новой теорией химического строения органических веществ: его доклад вызвал небывалый интерес.

«Каждый химический атом, входящий в состав тела, участвует в его образовании и действует с определенными силами. Эти силы влияют на окружающие его атомы, вследствие чего последние связываются в химическую частицу молекулу. Распределение действия этих сил, ведущее к связи атомов в определенном порядке, я называю химическим строением. Отсюда следует, что химическая природа сложных частиц определяется природой элементарных ее составных частей, их количеством и химическим строением».

Термин «химическое строение» встречался в литературе и до Бутлерова, но он переосмыслил его и применил для определения нового понятия о порядке межатомных связей в молекулах. Теория химического строения служит теперь принципиальной основой всех без исключения современных разделов синтетической химии; категориями структурной химии мыслят, создают новые производства, конструируют все инженеры и техники.

Итак, теория заявила свое право на существование. Она требовала дальнейшего развития, и где же, как не в Казани, следовало этим заниматься, ведь там родилась новая теория, там работал ее создатель Для Бутлерова ректорские обязанности оказались тяжким и непосильным бременем. Он несколько раз просил освободить его от этой должности, но все его просьбы оставались неудовлетворенными. Заботы не покидали его и дома. Только в саду, занимаясь любимыми цветами, он забывал тревоги и неурядицы прошедшего дня. Он не уставал любоваться камелиями и розами, выращенными собственными руками. Часто вместе с ним в саду работал его сын Миша; Александр Михайлович расспрашивал мальчика о событиях в школе, рассказывал любопытные подробности о цветах.

Наступил 1863 год - самый счастливый год в жизни великого ученого. Бутлеров был на правильном пути. Действуя диметилцинком на хлористый ацетил, ему удалось впервые в истории химии получить самый простой третичный спирт - третичный бутиловый спирт, или триметилкарбинол. Вскоре после этого в литературе появились сообщения об успешно проведенном синтезе первичного и вторичного бутиловых спиртов.

Ученым был известен изобутиловый спирт еще с 1852 года, когда он был впервые выделен из природного растительного масла. Теперь уже ни о каком споре и речи быть не могло, так как существовало четыре различных бутиловых спирта, и все они - изомеры.

Какой это был триумф структурной теории! И как счастлив был ее автор. Триумфом теории химического строения органических соединений Бутлерова явилось правильное объяснение на основе этой теории явлений изомерии. В статье «О различных способах объяснения некоторых случаев изомерии», опубликованной в 1863 году на немецком и в 1864 году на французском языках, Бутлеров сделал вывод: «Если при одинаковом составе вещества отличаются свойствами, то они должны также отличаться

и своим химическим строением». Лучшим подтверждением учения Бутлерова об изомерии послужил синтез теоретически предсказанных изомеров изобутана и изобутилена.

В 1862-1865 годах Бутлеров высказал основное положение теории обратимой изомеризации таутомерии, механизм которой, по Бутлерову, заключается в расщеплении молекул одного строения и соединении их остатков с образованием молекул другого строения. Это была гениальная мысль. Великий ученый утверждал необходимость динамического подхода к химическим процессам, то есть необходимость рассматривать их как равновесные. Приоритет Бутлерова как автора теории таутомерии не отрицал даже немецкий химик Петер Лаар, введший в оборот термин «таутомерия».

Успех принес ученому уверенность, но в то же время поставил перед ним новую, более трудную задачу. Необходимо было применить структурную теорию ко всем реакциям и соединениям органической химии, а главное, написать новый учебник по органической химии, где все явления рассматривались бы с точки зрения новой теории строения.

Бутлеров работал над учебником почти два года без перерыва. Книга «Введение к полному изучению органической химии» вышла из печати тремя выпусками в 1864-1866 годах. Она не шла ни в какое сравнение ни с одним из известных тогда учебников. Этот вдохновенный труд был откровением Бутлерова - химика, экспериментатора и философа, перестроившего весь накопленный наукой материал по новому принципу, по принципу химического строения.

Книга вызвала настоящую революцию в химической науке. Уже в 1867 году началась работа по ее переводу и изданию на немецком языке. Вскоре после этого вышли издания почти на всех основных европейских языках. По словам немецкого исследователя Виктора Мейера, она стала «путеводной звездой в громадном большинстве исследований в области органической химии».

С тех пор как Александр Михайлович закончил работу над учебником, он все чаще проводил время в Бутлеровке. Даже во время учебного года семья по нескольку раз в неделю наезжала в деревню. Младший сын, двухлетний Володя, целыми днями играл на лугу возле дома. Бутлеров чувствовал здесь себя свободным от забот и целиком отдавался любимым увлечениям: цветам и коллекциям насекомых.

Теперь Бутлеров меньше работал в лаборатории, но внимательно следил за новыми открытиями. Весной 1868 года по инициативе знаменитого химика Менделеева Александра Михайловича пригласили в Петербургский университет, где он начал читать лекции и получил возможность организовать собственную химическую лабораторию. Бутлеров разработал новую методику обучения студентов, предложив ныне повсеместно

принятый лабораторный практикум, в котором студенты обучались приемам работы с разнообразной химической аппаратурой.

В своих исследованиях Бутлеров продолжал развивать структурную теорию. Он задался целью доказать, что разветвленную и прямую углеродные цепи могут иметь все типы органических соединений. Это вытекало непосредственно из теории, но теоретические положения надо было доказать на практике. Разве нельзя получить углеводород, например бутан, четыре углеродных атома которого были бы связаны друг с другом не последовательно, а так, как они связаны в триметил-карбиноле? Но чтобы

найти правильный метод его синтеза, требовалось множество опытов.

И вот, наконец, усилия Бутлерова увенчались успехом. В большой колбе был долгожданный изобутилен. Доказано существование разветвленной цепи углеводородов!

Одновременно с научной деятельностью Бутлеров активно включается и в общественную жизнь Петербурга. В то время прогрессивную общественность особенно волновал вопрос об образовании женщин. Женщины должны иметь свободный доступ к высшему образованию! Были организованы Высшие женские курсы при Медико-хирургической академии, начались занятия и на Бестужевских женских курсах, где Бутлеров читал лекции по химии.

Многосторонняя научная деятельность Бутлерова нашла признание Академии наук. В 1871 году его избрали экстраординарным академиком, а три года спустя - ординарным академиком, что давало право получить квартиру в здании Академии. Там жил и Николай Николаевич Зинин. Близкое соседство еще больше укрепило давнюю дружбу.

Годы шли неумолимо. Работа со студентами стала для него слишком тяжела, и Бутлеров решил покинуть университет. Прощальную лекцию он прочитал 4 апреля 1880 года перед студентами второго курса. Они встретили сообщение об уходе любимого профессора с глубоким огорчением. Ученый совет принял решение просить Бутлерова остаться и избрал его еще на пять лет.

Ученый решил ограничить свою деятельность в университете лишь чтением основного курса. И все-таки несколько раз в неделю появлялся в лаборатории и руководил работой.

Через всю жизнь Бутлеров пронес еще одну страсть - пчеловодство. В своем имении он организовал образцовую пасеку, а в последние годы жизни настоящую школу для крестьян-пчеловодов. Своей книгой «Пчела, ее жизнь и правила толкового пчеловодства» Бутлеров гордился едва ли не больше, чем научными работами.

Бутлеров считал, что настоящий ученый должен быть и популяризатором своей науки. Параллельно с научными статьями он выпускал общедоступные брошюры, в которых ярко и красочно рассказывал о своих открытиях. Последнюю из них он закончил всего за полгода до смерти.

Умер ученый от закупорки кровеносных сосудов 5 августа 1886 года.

Выступление учащегося:

Альфред Вернер

Академик И.И. Черняев писал в 1966 году:

«Прошло более полвека со дня присуждения А. Вернеру Нобелевской премии за созданную им координационную теорию. Плодотворность ее ощущается все время, и с помощью современных методов исследований в области строения молекул обнаруживаются новые факты, неизменно укрепляющие оставленное Вернером научное наследство. Что касается практического значения реакций комплексообразования, то сейчас трудно назвать отрасль химической промышленности, в которой они хоть в какой то мере не участвовали бы.

Я полагаю, что работы А. Вернера во всей их совокупности до сих пор еще не оценены полностью, но при всех обстоятельствах богатейшая химическая жизнь этого великого ученого вызывает удивление и глубокую благодарность».

Альфред Вернер родился 12 декабря 1866 года в городе Мюлузе (Эльзас). Он был четвертым ребенком в семье токаря Жана Адама Вернера.

Его мать, Саломея Жанетта Вернер, происходила из богатой протестантской семьи. Домашние «бразды правления» находились у нее в руках. В шесть лет мальчик пошел в начальную школу. Уже тогда проявились его поразительные способности, учитель часто говорил ему: «Ах, Альфред, если бы ты только захотел, то мог бы стать первым учеником».

В 1878 году Альфред окончил начальную школу. После этого юноша поступает в Техническое училище. Здесь Альфред входил в число лучших учеников - он учился увлеченно, можно сказать вдохновенно. Именно в училище Вернер увлекся химией. В домашних условиях он начал проводить химические опыты. Вместе с тем юный ученый интересовался литературой, искусством и в особенности архитектурой.

Незадолго до окончания училища Вернер написал свое первое научное сочинение «Сообщение о мочевой кислоте и о рядах теобромина, кофеина и их производных» (сентябрь 1885 года).

Интересно, что об этой работе Вернер вспомнил в речи по случаю присуждения ему Нобелевской премии: «Не имея никаких собственных экспериментальных данных, я просто скомпилировал работы о соединениях мочевой группы, которая, как я полагал в своем юношеском энтузиазме, воплощала в себе всю органическую химию... Я пошел к директору химической школы в Мюлузе профессору Эмилио Нелтингу... и показал ему работу. Он взял ее и велел мне прийти через восемь дней. Точно в назначенный срок я пришел, полный радужных надежд. И хотя профессор высказал много хвалебных слов о моей работе, он не скрыл от меня, что переворота в органической химии я не произвел и что мне еще предстоит много учиться. Я был до известной степени удовлетворен его отзывом и немедленно спросил, сколько, по его мнению, мне потребуется времени, чтобы стать профессором. Он улыбнулся и ответил, что придется запастись терпением лет на семь восемь».

В октябре 1885 года Альфреда призвали в германскую армию в качестве «одногодичного вольноопределяющегося». Отслужив ровно год в городе Карлсруэ Вернер тотчас же уволился из армии.

Альфред решил продолжить образование в Цюрихском политехникуме - одном из самых передовых учебных заведений в Европе. Осенью 1886 года он успешно сдал экзамены. В то время в политехникуме преподавали такие крупные химики, как А. Ганч. Г. Лунге. Г. Гольдшмидт, Ф. Тредуэлл. Вернер всю жизнь с теплотой и благодарностью вспоминал этих учителей, давших ему превосходную школу. Успеваемость Альфреда была высокой, хотя позднее он говорил: «Мои учителя и однокурсники знали меня как не всегда усердного, но всегда веселого студента». На последнем, четвертом, курсе Вернер решил специализироваться в области органической химии. В дипломной работе подробно описал синтез некоторых органических и неорганических соединений. В августе 1889 года Вернер окончил Цюрихский политехникум и получил звание технического химика.

По предложению одного из преподавателей профессора Г. Лунге, Альфред стал внештатным (неоплачиваемым) ассистентом в его химико технической лаборатории. «Возможно, лучше бы мне пойти на фабрику. - писал он отцу, - но признаюсь, что я считаю ученую карьеру своим призванием».

Тогда же под руководством профессора А. Ганча Вернер начал свою докторскую диссертацию. Учителя и ученика сравнивает Г. Кауффман: «Во многих отношениях эти два человека представляли собой резкую противоположность. Ганч был худощав, сдержан, умерен в своих житейских потребностях и всегда себя держал в руках. Вернер, напротив, был склонен к полноте, общителен, любил табак и алкоголь, временами был слишком эмоциональным и даже экспансивным».

Вернер всю жизнь был благодарен Ганчу. Свой капитальный труд «Учебник стереохимии» (1904) он посвятил с благодарностью своему учителю.

В 1890 году в «Докладах Немецкого химического общества» появилась статья Ганча и Вернера «О пространственном расположении атомов в азотсодержащих молекулах». Ганч признавал, что «опубликованная теория во всем существенном является духовной собственностью А. Вернера, который совершенно самостоятельно со всей ясностью сформулировал ее основные положения со всеми важнейшими выводами».

В этой теоретической части докторской диссертации Вернера впервые получила прочную научную основу стереохимия азотсодержащих соединений. Вернер впервые высказал идею, что «три валентности атома азота в некоторых соединениях направлены к углам тетраэдра, четвертый угол которого занимает сам атом азота».

Защита докторской диссертации Вернера состоялась в октябре 1890 года в Цюрихской высшей школе. Один из оппонентов, профессор А. Абелянц, отметил в своем отзыве, что докторская диссертация Вернера - «выдающееся достижение», так как она не только внесла крупный вклад в объяснение хорошо известных случаев изомерии, но и привела к открытиям новых стерео изомерных азотсодержащих соединений.

Цюрихская высшая школа присудила Вернеру степень доктора философии «с особым признанием замечательных успехов». После защиты диссертации ученый полон оптимизма: «Я начинаю занимать свое место среди химиков нашего времени, и. если небо сохранит мне здоровье, я собираюсь превзойти их всех, одного за другим, так как слава -не пустое слово. Это личное удовлетворение человека, которое столь необходимо в моменты слабости».

В 1890-1891 годах Вернер занимался исследованием стереоизомерии производных бензгидроксамовой кислоты. Благодаря полученным экспериментальным данным, ученый сумел показать существование геометрической изомерии у некоторых производных бензгидроксамовой кислоты.

Большой интерес представляла теоретическая часть этой работы «К теории сродства и валентности». Вернер выдвинул оригинальные идеи о химическом сродстве: «сродство есть сила притяжения, действующая из центра атома равномерно ко всем частям его шарообразной поверхности». Принимая атом «ради простоты» шарообразным, он рассматривал его как определенную пространственную часть «единой материи».

В октябре 1891 года Вернер представил на суд Высшему швейцарскому ученому совету конкурсную работу и просил разрешить ему преподавание химии в Цюрихском политехникуме. Не дожидаясь его решения, ученый отправляется в Париж, где начал работать в термохимической лаборатории М. Бертло в «Коллеж де Франс».

«От Бертло в Париже, вспоминал впоследствии Вернер, я узнал, что вполне возможно разрешать химические проблемы на основе концепций, отличающихся от тех, которые признавались в то время». Здесь Вернер выполнил первое исследование по неорганической химии «Об основном нитрате кальция».

Весной 1892 года Вернер покинул гостеприимную Францию. В январе того же года Высший швейцарский ученый совет, рассмотрев его «конкурсную работу», признал, что ученый вполне достоин звания приват доцента. Вернувшись в Цюрих, ученый получил, наконец, возможность читать лекции перед студенческой аудиторией родного политехникума.

29 сентября 1893 года, всего в 27 лет, Вернера избрали профессором Цюрихской высшей школы. Это было признание способностей молодого ученого, что подтвердила появившаяся вскоре его знаменитая координационная теория.

В 1893 году немецкий «Журнал неорганической химии» опубликовал статью Вернера на 63 страницах «О строении неорганических соединений», ознаменовавшей новую эпоху в развитии представлений о природе и строении комплексных соединений. В ней автор мастерски изложил теорию, позволившую объяснить особенности строения значительного класса веществ - координационных, или комплексных, соединений.

По мере развития химии, открытия и изучения все новых и новых соединений ученые все чаще стали сталкиваться с координационными соединениями. Для объяснения их строения и свойств Вернером была разработана координационная теория, в основу которой легли положения стереохимии и теории электролитической диссоциации. По Вернеру, комплексные, или координационные, соединения построены следующим образом: в центре молекулы находится один атом или ион металла. Вокруг него расположены атомы и их группы, связанные с центральным атомом координационными связями. Эти атомы и группы называются лигандами. Типичные лиганды анионы кислот (кислотные остатки) и некоторые нейтральные молекулы (обычно небольшого размера, содержащие атомы кислорода, азота, фосфора, серы и др.). Наиболее распространенные лиганды в комплексных соединениях - вода, аммиак, оксид углерода.

Общее число молекул или ионов, непосредственно связанных с центральным атомом, называется координационным числом. Известны молекулы с координационными числами от 1 до 12 (чаще всего встречаются 4 и 6). Лиганды вместе с центральным атомом образуют внутреннюю сферу комплекса. Известны координационные соединения, состоящие только из внутренней сферы, например карбонилы железа, никеля, хрома. Но в большинстве случаев вокруг внутренней сферы образуется еще и внешняя - из ионов, не связанных непосредственно с центральным атомом или ионом. Эти ионы обычно располагаются по вершинам правильных многогранников вокруг внутренней сферы и во многих химических реакциях участвуют различным образом: внутренняя сфера - как один многозарядный ион, внешняя сфера как обычные ионы. Простейший пример такого координационного соединения ферроцианид калия.

Вернер распространил стерео химические представления на область комплексных соединений. Созданная им координационная теория позволила представить пространственное строение этих соединений. Ученый предположил, что комплексные соединения с координационным числом 6 имеют пространственное строение октаэдра, а с координационным числом 4 - плоского квадрата.

В 1911 году Вернер обнаружил предсказанные ранее оптически активные неорганические изомеры - соединения кобальта, хрома, железа. Это было крупным успехом координационной теории. Оптическая активность перестала быть специфическим свойством молекул с асимметрическим атомом углерода. Вернер составил грандиозную программу изучения нового класса соединений и сумел силами своей научной школы заложить основу химии координационных соединений. Работы Вернера наметили пути дальнейшего развития неорганической химии и выявили общность в эволюции представлений о структуре и свойствах органических и неорганических веществ.

На основе координационной теории в наши дни объясняется химическое строение таких важных веществ, как хлорофилл, гемоглобин, лаки, ферменты.

Научные интересы Вернера не ограничивались разработкой проблем химии координационных соединений. В 1905 году он предложил близкий к современному вариант длиннопериодной системы химических элементов, а в 1907 году разработал новую теорию кислот и оснований которая стала важной предпосылкой создания в двадцатые годы теории кислотно основного катализа.

В 1913 году Вернер был удостоен Нобелевской премии «в знак признания его работ о природе связей атомов в молекулах, которые позволили по новому взглянуть на результаты ранее проведенных исследований и открыли новые возможности для научно исследовательской работы, особенно в области неорганической химии».

Со свойственной ему прямолинейностью цюрихский профессор заявил: «Я никогда не отвергал мысль, что когда нибудь это произойдет. Но я не ожидал, что это будет в этом году. Я знаю, что работал весьма тщательно. Химические исследования всегда были для меня удовольствием. И я испытывал ни с чем не сравнимое наслаждение, когда мне удавалось на основании размышлений прийти к новым выводам, которые можно было подтвердить экспериментально».

Своим многолетним трудом Вернер подвел прочный экспериментальный фундамент под созданное им координационное учение, утвердил его в науке, превратил из гипотезы в строгую, всесторонне обоснованную теорию. Из под его пера вышли 174 печатные работы, освещающие экспериментальные исследования, две монографии, сыгравшие большую роль в развитии науки, и много научно популярных статей.

Вернер женился 1 октября 1894 года. Его суженой стала 21 летняя Эмма Вильгельмина Гискер. приемная дочь протестантского пастора. Через три недели после свадьбы ученый принял швейцарское гражданство как лицо «безупречной репутации с годовым доходом 4000 франков».

В 1897 году в семье Вернеров родился сын, которого назвали Альфредом Альбертом Юлиусом, или, по домашнему, Фреди. После его рождения по проекту ученого был построен комфортабельный особняк. Весной 1898 года Вернеры вселились в этот прекрасный дом, в котором ученый жил до самой смерти.

В 1902 году в семье Вернера родился второй и последний ребенок - дочь Иоганна Эмма Шарлотта. Вернер души не чаял в детях. Во время каникул родители с детьми отправлялись на один из горных курортов. В то время ученый сильно увлекался альпинизмом. В молодые годы Вернер был также завзятым конькобежцем, увлекался и парусным спортом.

Уже в зрелом возрасте ученый увлекся охотой. В последние годы жизни он часто проводил свободное время в обществе своих друзей, играл на бильярде, в шахматы, карты.

Вскоре после получения Нобелевской премии самочувствие Вернера заметно ухудшилось. Диагноз врачей был неутешительным - общий атеросклероз. Болезнь медленно, но неуклонно прогрессировала. 15 ноября 1919 года Вернер скончался.

Выступление учащегося:

Антуан Лоран Лавуазье

Антуан Лоран Лавуазье родился в семье адвоката 28 августа 1743 года. Первые годы жизни ребенок провел в Париже, в переулке Пеке, окруженном садами и пустырями. Мать его умерла, родив еще девочку, в 1748 году, когда Антуану Лорану было всего пять лет.

Первоначальное образование он получил в коллеже Мазарини. Эта школа была устроена кардиналом Мазарини для знатных детей, но в нее принимали экстернов и из других сословий. Она была самой популярной школой в Париже.

Антуан Лоран учился отлично. Как многие из выдающихся ученых, он мечтал сначала о литературной славе и, находясь еще в коллеже, начал писать драму в прозе «Новая Элоиза», но ограничился только первыми сценами.

По выходе из коллежа он поступил на факультет права, - вероятно, потому, что его отец и дед были юристами и эта карьера начинала уже становиться традиционной в их семействе: в старой Франции должности обыкновенно передавались по наследству.

В 1763-м он получил степень бакалавра, в следующем году - лиценциата прав.

Но юридические науки не могли удовлетворить его безграничной и ненасытной любознательности. Он интересовался всем - от философии Кондильяка до освещения улиц Он впитывал знания, как губка; всякий новый предмет возбуждал его любопытство, он ощупывал его со всех сторон, выжимая из него все, что возможно. Вскоре, однако, из этого разнообразия начинает выделяться одна группа знаний, которая все более и

более поглощает его: естественные науки. Не оставляя своих занятий правом, он изучал математику и астрономию у Лакайля, очень известного в то время астронома, имевшего небольшую обсерваторию в коллеже Мазарини; ботанику - у великого Бернара Жюсье, с которым вместе гербаризировал; минералогию - у Гэтара, составившего первую минералогическую карту Франции; химию - у Руэля.

Первые работы Лавуазье были сделаны под влиянием его учителя и друга Гэтара. Гэтар предпринял ряд экскурсий; Лавуазье был его сотрудником в течение трех лет, начиная с 1763 года, и сопровождал его в поездках или «экскурсировал» один. Плодом этой экскурсии явилась его первая работа - «Исследование различных родов гипса».

После пяти лет сотрудничества с Гэтаром, в 1768 году, когда Лавуазье исполнилось 25 лет, он был избран членом Академии наук.

В 1769 году произошло событие, в будущем предопределившее трагический конец ученого. Лавуазье вступил в генеральный откуп товарищем откупщика Бодона, уступившего ему третью часть своих доходов.

«Ferme generate» было обществом финансистов, которому государство уступало за известную плату сбор косвенных налогов (винный, табачный, соляной, таможенные и крепостные пошлины). Контракт между откупом и государством заключался на шесть лет; в промежутке между окончанием одного и выработкой другого контракта сбор податей поручался (фиктивно) особо назначенному лицу, «генеральному подрядчику», который давал свое имя новому контракту и по утверждении его уступал право сбора откупщикам. Это была чистая формальность: труды «генерального подрядчика» ограничивались получением четырех тысяч ливров в год в течение шести лет. Таким образом, в распоряжении министра финансов оказывалась синекура, которую он мог подарить кому-нибудь из своих протеже.

Откупщиков ненавидели. Никто не верил в их честность. Они могут воровать, следовательно, они воруют, - так рассуждала публика. Как не погреть руки около общественного ящика? Это сам Бог велел! Таково было общее мнение об учреждении, членом которого стал Лавуазье.

Некоторые из его товарищей по академии опасались, что занятия, связанные с новой должностью, пагубно повлияют на его научную деятельность. «Ничего, - утешал их математик Фонтэн, - зато он будет задавать нам обеды».

Устроившись в материальном отношении, Лавуазье вскоре женился на дочери генерального откупщика Польза. Женитьба Лавуазье была до некоторой степени избавлением для его невесты. Дело в том, что ее важный родственник, генерал-контролер (министр финансов) Террэ, от которого зависел Польз, во что бы то ни стало хотел выдать ее за некоего графа Амерваля, обнищалого дворянина, славившегося своими кутежами, скандалами и буйным характером и желавшего поправить свои финансы женитьбой на богатой мещаночке. Польз наотрез отказался от этой чести; и так как Террэ настаивал, то откупщик решил поскорее выдать дочь замуж, чтобы прекратить всякий разговор о графе. Он предложил ее руку Лавуазье, и последний согласился. В 1771 году ему было 28 лет, а его невесте - 14. Несмотря на молодость невесты, брак оказался счастливым. Лавуазье

нашел в ней деятельную помощницу и сотрудницу в своих занятиях. Она помогала ему в химических опытах, вела журнал лаборатории, переводила для мужа работы английских ученых. Даже сделала рисунки для одной из книг.

Известный ученый Артур Юнг, путешествовавший по Франции в 1787 году, интересуясь «познанием всякого рода вещей», побывал также у Лавуазье и оставил такой отзыв о его жене' «Г-жа Лавуазье, особа очень образованная, умная и живая, приготовила нам завтрак по-английски; но лучшая часть ее угощения, без сомнения, ее разговор, частью об «Опыте о флогистоне» Кирвана, частью о других предметах, которые она умеет передавать замечательно интересно».

Она гордилась успехами мужа больше, чем он сам. Недостатком ее характера была некоторая вспыльчивость, резкость и высокомерие. Тем не менее они уживались как нельзя лучше, связанные не только любовью, но-и главным образом - дружбой, взаимным уважением, общими интересами и общей работой. Детей у них не было.

В жизни Лавуазье придерживался строгого порядка. Он положил себе за правило заниматься наукой шесть часов в день: от шести до девяти утра и от семи до десяти вечера. Остальная часть дня распределялась между занятиями по откупу, академическими делами, работой в различных комиссиях и так далее.

Один день в неделю посвящался исключительно науке. С утра Лавуазье запирался в лаборатории со своими сотрудниками; тут они повторяли опыты, обсуждали химические вопросы, спорили о новой системе. Здесь можно было видеть славнейших ученых того времени - Лапласа, Монжа, Лагранжа, Гитона Морво, Маккера.

Лаборатория Лавуазье сделалась центром тогдашней науки. Он тратил огромные суммы на устройство приборов, представляя в этом отношении совершенную противоположность некоторым из своих современников.

Во второй половине XVIII века химия пребывала в состоянии лихорадочного оживления. Ученые работают не покладая рук, открытия сыплются за открытиями, выдвигается ряд блестящих экспериментаторов.

Однако еще предстояло найти основной закон химии, руководящее правило химических исследований, создать метод исследования, вытекавший из этого основного закона; объяснить главные разряды химических делений и, наконец, выбросить мусор фантастических теорий, развеять призраки, мешавшие правильному взгляду на природу.

Эту задачу взял на себя и исполнил Лавуазье. Для выполнения ее недостаточно было экспериментального таланта. К золотым рукам требовалось присоединить золотую же голову. Такое счастливое соединение представлял Лавуазье. Ему принадлежит ряд блестящих открытий, но почти все они были сделаны независимо от него другими учеными. Кислород, например, открыт Байеном и Пристли до Лавуазье и Шееле, независимо от первых трех; открытие состава воды приписывалось, кроме Лавуазье,

Кавендишу, Уатту и Монжу.

В научной деятельности Лавуазье поражает ее строго логический ход. Сначала он вырабатывает метод исследований. Ученый ставит опыт. В течение 101 дня перегоняет воду в замкнутом аппарате. Вода испаряется, охлаждается, возвращается в приемник, снова испаряется и так далее. В результате получилось значительное количество осадка. Откуда он взялся?

Тем не менее общий вес аппарата по окончании опыта не изменился: значит, никакого вещества извне не присоединилось. В этой работе Лавуазье убеждается во всеоружии своего метода - метода количественного исследования.

Овладев методом, Лавуазье приступает к своей главной задаче. Работы его, создавшие современную химию, охватывают период времени с 1772 по 1789 год. Исходным пунктом его исследований послужил факт увеличения веса тел при горении. В 1772 году он представил в академию коротенькую записку, в которой сообщал о результате своих опытов, показывающих, что при сгорании серы и фосфора они увеличиваются в весе за счет воздуха, иными словами, соединяются с частью воздуха.

Этот факт - основополагающее, капитальное явление, послужившее ключом к объяснению всех остальных. Никто этого не понимал, да и современному читателю может с первого взгляда показаться, что речь идет здесь о единичном неважном явлении... Но это неверно. Объяснить факт горения значило объяснить целый мир явлений окисления, происходящих всегда и всюду - в воздухе, земле, организмах - во всей мертвой и живой природе, в бесчисленных вариациях и разнообразнейших формах.

Около шестидесяти мемуаров было им посвящено уяснению различных вопросов, связанных с этим исходным пунктом. В них новая наука развивается как клубок. Явления горения естественно приводят Лавуазье, с одной стороны, к исследованию состава воздуха, с другой - к изучению остальных форм окисления; к образованию различных окисей и кислот и уяснению их состава; к процессу дыхания, а отсюда - к исследованию органических тел и открытию органического анализа и т. д.

В 1775 году он представил академии мемуар, в котором состав воздуха был впервые точно выяснен. Воздух состоит из двух газов: «чистого воздуха», способного усиливать горение и дыхание, окислять металлы, и «мефитического воздуха», не обладающего этими свойствами. Названия кислород и азот были даны позднее.

Теория горения повела к объяснению состава различных химических соединений. Уже давно различались окислы, кислоты и соли, но строение оставалось загадочным. Все кислоты Лавуазье рассматривает как соединения неметаллических тел с кислородом: так, с серой он дает серную, с углем - угольную, с фосфором - фосфорную кислоту и т. д..

Наконец, знание водорода и продукта его окисления дало ему возможность положить основание в фундамент органической химии. Он определил состав органических тел и создал органический анализ путем сжигания углерода и водорода в определенном количестве кислорода. «Таким образом, историю органической химии, как и неорганической, приходится начинать с Лавуазье» (Н. Меншуткин).

Когда основы современной химии были созданы, Лавуазье решил соединить данные своих многочисленных мемуаров в виде сжатого очерка.

В 1789 году появился его первый учебник современной химии - явление в своем роде единственное в истории наук: весь учебник составлен по работам самого автора.

Работы Лавуазье захватили не одну только область химии; они знаменуют собою начало новой эры и в физиологии. Лавуазье первым свел явления жизни к действиям химических и физических сил и тем самым нанес сокрушительный удар по теориям витализма и анимизма.

Он создал учение о дыхании как медленном окислении, происходящем внутри организма, причем кислород, соединяясь с элементами тканей, дает воду и углекислоту. Обмен газов при дыхании исследован им с такою полнотою, что дальнейшие исследования не прибавили к его данным почти ничего существенного. Не меньшую важность имело его учение о животной теплоте. Она развивается вследствие сгорания тканей за счет кислорода, поглощаемого при дыхании. Количество поглощаемого кислорода увеличивается на холоде, при пищеварении, а особенно при мускульной работе, то есть во всех этих случаях происходит усиленное горение. Пища играет роль топлива: «если бы животное не возобновляло того, что теряет при дыхании, оно скоро погибло бы, как гаснет лампа, когда в ней истощится запас масла».

Научные исследования и занятия откупом не помешали Лавуазье проявить удивительную энергию в академических делах. Число его докладов (не считая собственно ученых мемуаров) - более двухсот. В 1768 году он избран адъюнктом, в 1772-м Лавуазье стал действительным членом, в 1778-м - пенсионером, в 1785-м - директором академии.

В 1778 году Лавуазье купил имение Фрешин между Блуа и Вандомом за 229 тысяч ливров; затем приобрел и некоторые другие имения (всего на 600 тысяч ливров) и принялся за агрономические опыты, думая, что «можно оказать большую услугу местным земледельцам, давая им пример культуры, основанной на лучших принципах». В своем имении он не скупился на агрономические опыты и постепенно довел свое хозяйство до цветущего состояния.

Плодотворны были и результаты управления Лавуазье пороховыми заводами в 1775-1791 годах. За это дело он взялся со своей обычной энергией.

Во время Французской революции, как один из откупщиков, ученый попал в тюрьму. 8 мая 1794 года состоялся суд. По сфабрикованному обвинению 28 откупщиков, в том числе и Лавуазье, были приговорены к смертной казни. Лавуазье шел четвертым по списку. Перед ним казнили его тестя Польза. Затем наступила его очередь.

«Палачу довольно было мгновения, чтобы отрубить эту голову, - сказал на другой день Лагранж, - но, может быть, столетия будет мало, чтобы произвести другую такую же».

Учитель:

Сегодня мы узнали очень много интересного о жизни ученых-химиков и о их вкладе в развитие науки. Спасибо всем выступавшим!!!

© 2010-2022