Исследование оптических явлений в природе

Раздел Физика
Класс -
Тип Другие методич. материалы
Автор
Дата
Формат docx
Изображения Есть
For-Teacher.ru - все для учителя
Поделитесь с коллегами:

Исследование оптических явлений в природе.Исследование оптических явлений в природе.Исследование оптических явлений в природе.Исследование оптических явлений в природе.Исследование оптических явлений в природе.Исследование оптических явлений в природе.Исследование оптических явлений в природе.Исследование оптических явлений в природе.Исследование оптических явлений в природе.Исследование оптических явлений в природе.Исследование оптических явлений в природе.Исследование оптических явлений в природе.МОУ «Средняя общеобразовательная школа №3»








ИССЛЕДОВАТЕЛЬСКАЯ РАБОТА





на тему: «ОПТИКА. ОПТИЧЕСКИЕ ЯВЛЕНИЯ В ПРИРОДЕ»

по физике











Ученик 8 б класса Кендик Михаил Александрович

Руководитель: Базалей Наталия Дмитриевна





















г. Воскресенск 2014





Содержание





Введение

Цель: узнать, что это за наука - Оптика, исследовать оптические явления в природе: познакомиться с сущностью наблюдаемых природных явлений, объяснить их на основе физических законов и теорий, «раскрыть тайны» оптических природных явлений.

Объектами исследования являются: солнечный «зайчик», блеск алмазов, цвет неба и зорь, радуга, галоглория, миражи, полярные сияния.

Передо мной встала задача - найти ответы на следующие вопросы:

  1. Что такое Оптика?

  2. Какие явления связаны с отражением света?

  3. Откуда берется солнечный «зайчик»?

  4. Почему очень ярко сверкают алмазы?

  5. Как объяснить цвет неба и зорь?

  6. Какие явления связаны с преломлением света?

  7. Откуда берется Радуга?

  8. Что такое Гало? Глория?

  9. Что такое Миражи?

  10. Почему возникают Полярные сияния?

Основные методы, которые я использовал - изучение литературы, наблюдение, анкетирование, эксперимент.



Что такое оптика?

Оптика (греч. optikē - наука о зрительных восприятиях, от optós - видимый, зримый), раздел физики, в котором изучаются природа оптического излучения (света), его распространение и явления, наблюдаемые при взаимодействии света и вещества.

Оптика разделяется на геометрическую, физическую и физиологическую.

Геометрическая Оптика оставляет в стороне вопрос о природе света, исходит из эмпирических законов его распространения и использует представление о световых лучах, преломляющихся и отражающихся на границах сред с разными оптическими свойствами и прямолинейных в оптически однородной среде. Методы геометрической оптики позволяют изучить условия формирования оптического изображения объекта как совокупности изображений отд. его точек и объяснить многие явления, связанные с прохождением оптического излучения в различных средах (например, искривление лучей в земной атмосфере вследствие непостоянства ее показателя преломления, образование миражей, радуг и т.п.). Наибольшее значение геометрическая оптика имеет для расчёта и конструирования оптических приборов - от очковых линз до сложных объективов и огромных астрономических инструментов.

Физическая Оптика рассматривает проблемы, связанные с природой света и световых явлений. Утверждение, что свет есть поперечные электромагнитные волны, основано на результатах огромного числа экспериментальных исследований дифракции света, интерференции света, поляризации света и распространения света в анизотропных средах (см. Кристаллооптика, Оптическая анизотропия). Совокупность явлений, в которых проявляется волновая природа света, изучается в крупном разделе физической Оптики - волновой Оптики Её математическим основанием служат общие уравнения классической электродинамики: уравнения.Максвелла. Волновая Оптика позволяет объяснить все эмпирические законы геометрической Оптики и установить границы её применимости. В отличие от геометрической, волновая Оптика даёт возможность рассматривать процессы распространения света не только при размерах формирующих или рассеивающих световые пучки систем >> (длины волны света) но и при любом соотношении между ними. Во многих случаях решение конкретных задач методами волновой оптики оказывается чрезвычайно сложным. Поэтому получила развитие квазиоптика (особенно применительно к наиболее длинноволновому участку спектра оптического излучения и смежному с ним т. н. субмиллиметровому под диапазону радиоизлучения) в которой процессы распространения, преломления и отражения описываются геометрооптически но в которой при этом нельзя пренебрегать и волновой природой излучения. Геометрический и волновой подходы формально объединяются в геометрической теории дифракции, в которой дополнительно к падающим, отражённым и преломлённым лучам геометрической Оптики постулируется существование различного типа дифрагированных лучей. Огромную роль в развитии волновой Оптики сыграло установление связи величин e и m с молекулярной и кристаллической структурой вещества. Оно позволило выйти далеко за рамки феноменологического описания оптических явлений и объяснить все процессы, сопровождающие распространение света в рассеивающих, и анизотропных средах, и вблизи границ разделов сред с разными оптическими характеристиками, а также зависимость от одних оптических свойств сред - их дисперсию, влияние на световые явления в средах давления, температуры, звука, электрического и магнитного полей и многое др.

По существу отвлекается от физической природы света и фотометрия, посвященная главным образом измерению световых величин, Фотометрия представляет собой методическую основу исследования процессов испускания, распространения и поглощения излучения по результатам его действия на приёмники излучения. Ряд задач фотометрии решается с учётом закономерностей восприятия человеческим глазом света и его отдельных цветовых составляющих. Изучением этих закономерностей занимается физиологическая Оптика, смыкающаяся с биофизикой и психологией и исследующая зрительный анализатор (от глаза до коры головного мозга) и механизмы зрения.

Все разделы оптики имели и имеют многочисленные практические применения. Задачи рационального освещения улиц, помещений, рабочих мест на производстве, зрелищ, исторических и архитектурных памятников и пр. решаются светотехникой на основе геометрической оптики. Одна из важнейших традиционных задач оптики - получение изображений, соответствующих оригиналам как по геометрической форме, так и по распределению яркости (иконика), решается главным образом геометрической оптики. Геометрическая оптика даёт ответ на вопрос, как следует построить оптическую систему для того, чтобы каждая точка объекта изображалась бы также в виде точки при сохранении геометрического подобия изображения объекту. Она указывает на источники искажений изображения и их уровень в реальных оптических системах. Для построения оптических систем существенна технология изготовления оптических материалов (стёкол, кристаллов, оптической керамики и пр.) с требуемыми свойствами, а также технология обработки оптических элементов. Из технологических соображений чаще всего применяют линзы и зеркала со сферическими поверхностями, но для упрощения оптических систем и повышения качества изображений при высокой светосиле используют и асферические оптические элементы.

Успехи оптики стимулировали развитие оптоэлектроники. Первоначально она понималась как замена электронных элементов в счётно-решающих и др. устройствах оптическими. Затем (к концу 60 - начала 70-х гг. 20 в.) стали разрабатываться принципиально новые подходы к решению задач вычислительной техники и обработки информации и предлагаться новые технические решения, основанные на применении микрооптических устройств.

Практически нет ни одной области науки или техники, в которой не использовались бы оптические методы, а во многих из них оптика играет определяющую роль.



Исторический очерк

Оптика - одна из древнейших наук, тесно связанная с потребностями практики на всех этапах своего развития. Прямолинейность распространения света была известна народам Месопотамии за 5 тыс. лет до н. э. и использовалась в Древнем Египте при строительных работах. Пифагор в 6 в. до н. э. высказал близкую к современной точку зрения, что тела становятся видимыми благодаря испускаемым ими частицам. Аристотель (4 в. до н. э.) полагал, что свет есть возбуждение среды, находящейся между объектом и глазом. Он занимался атмосферной Оптикой и считал причиной появления радуг отражение света каплями воды. В том же веке в школе Платона были сформулированы два важнейших закона геометрической Оптики - прямолинейность лучей света и равенство углов их падения и отражения. Евклид (3 в. до н. э.) в трактатах по Оптике рассматривал возникновение изображений при отражении от зеркал. Главный вклад греков, явившийся первым шагом в развитии Оптики как науки, состоит не в их гипотезах о природе света, а в том, что они нашли законы его прямолинейного распространения и отражения (катоптрика) и умели ими пользоваться.

Второй важный шаг состоял в понимании законов преломления света (диоптрика) и был сделан лишь много веков спустя. Диоптрические опыты описывались Евклидом и Клеомедом (1 в. н. э.), о применении стеклянных шаров как зажигательных линз упоминали Аристофан (около 400 до н. э.) и Плиний Старший (1 в. н. э.), а обширные сведения о преломлении были изложены Птолемеем (130 н. э.); важность этого вопроса тогда состояла главным образом в его непосредственной связи с точностью астрономических наблюдений. Однако законы преломления не удалось установить ни Птолемею, ни арабскому учёному Ибн аль-Хайсаму, написавшему в 11 в. знаменитый трактат по Оптике, ни даже Г. Галилею и И. Кеплеру. Вместе с тем в средние века уже хорошо были известны эмпирические правила построения изображений, даваемых линзами, и начало развиваться искусство изготовления линз. В 13 в. появились очки. По некоторым данным, около 1590 З. Янсен (Нидерланды) построил первый двухлинзовый микроскоп. Первые же наблюдения с помощью телескопа, изобретённого Галилеем в 1609, принесли ряд замечательных астрономических открытий. Однако точные законы преломления света были экспериментально установлены лишь около 1620 В. Снеллиусом и Р. Декартом, изложившим их в «Диоптрике» (1637). Этим (и последующей формулировкой Ферма принципа) был завершен фундамент построения и практического использования геометрической оптики.



Роль оптики в развитии физики

Роль оптики в развитии современной физики велика. Возникновение двух наиболее важных и революционных теорий двадцатого столетия (квантовой механики и теории относительности) в существенной мере связано с оптическими исследованиями. Оптические методы анализа вещества на молекулярном уровне породили специальное научное направление - молекулярную оптику. К ней тесно примыкает оптическая спектроскопия, применяемая в современном материаловедении, при исследованиях плазмы, в астрофизике. Существуют также электронная и нейтронная оптики; созданы электронный микроскоп и нейтронное зеркало. Разработаны оптические модели атомных ядер.

Способствуя развитию разных направлений современной физики, оптика в то же время и сама переживает сегодня период бурного развития. Основной толчок этому развитию дало изобретение интенсивных источников когерентного света - лазеров. В результате волновая оптика поднялась на более высокую ступень, соответствующую когерентной оптике. Трудно даже перечислить все новейшие научно-технические направления, развивающиеся благодаря появлению лазеров. Среди них нелинейная оптика, голография, радиооптика, пикосекундная оптика, адаптивная оптика и другие. Радиооптика возникла на стыке радиотехники и оптики; она исследует оптические методы передачи и обработки информации. Эти методы обычно сочетают с традиционными электронными методами; в результате сложилось научно-техническое направление, называемое оптоэлектроникой. Передача световых сигналов по диэлектрическим волокнам составляет предмет волоконной оптики. Используя достижения нелинейной оптики, можно исправлять волновой фронт светового пучка, искажающийся при распространении света в той или иной среде, например в атмосфере или в воде. В результате возникла и интенсивно развивается так называемая адоптивная оптика. Современная лазерная техника позволяет получать световые импульсы длительностью порядка всего лишь пикосекунды. Такие импульсы оказываются уникальным «инструментом» для исследования целого ряда быстропротекающих процессов в веществе, и в частности в биологических структурах. Возникло и развивается специальное направление - пикосекундная оптика; к нему тесно примыкает фотобиология. Можно без преувеличения сказать, что широкое практическое использование достижений современной оптики. - обязательное условие научно-технического прогресса. Изобретение телескопа и спектроскопа открыло перед человеком удивительнейший и богатейший мир явлений, происходящих в необъятной Вселенной. Изобретение микроскопа произвело революцию в биологии. Фотография помогла и продолжает помогать чуть ли не всем отраслям науки. Одним из важнейших элементов научной аппаратуры является линза. Без неё не было бы микроскопа, телескопа, спектроскопа, фотоаппарата, кино, телевидения и т.п. не было бы очков, и многие люди, которым перевалило за 50 лет, были бы лишены возможности читать и выполнять многие работы, связанные со зрением.

Область явлений, изучаемая физической оптикой, весьма обширна. Оптические явления теснейшим образом связаны с явлениями, изучаемыми в других разделах физики, а оптические методы исследования относятся к наиболее тонким и точным. Поэтому неудивительно, что оптике на протяжении длительного времени принадлежала ведущая роль в очень многих фундаментальных исследованиях и развитии основных физических воззрений. Достаточно сказать, что обе основные физические теории прошлого столетия - теория относительности и теория квантов - зародились и в значительной степени развились на почве оптических исследований. Изобретение лазеров открыло новые широчайшие возможности не только в оптике, но и в её приложениях в различных отраслях науки и техники.



Природа света

1. Вопрос о природе света волновал человечество с давних времен. Законы отражения света были известны во времена Евклида (III в. до н. э.). Законы преломления света были установлены Р. Декартом и В. Снеллиусом в конце XVI в. В это же время стали шлифовать линзы и использовать их для очков. В начале XVII в. создают первые телескопы, а в середине XVII в. A. Лeвенгук, изготовив линзы с увеличением до 300, заложил основу микроскопии.

Первые систематические теории света предложили практически одновременно (в середине XVII в.) И. Ньютон и X. Гюйгенс.

2.Ньютон в своих работах по оптике основное внимание сконцентрировал на экспериментальном исследовании свойств света, дисперсии, спектрального разложения, на объяснении цвета. В 1668 г. он создал новый тип телескопа-рефлектора, где в качестве объектива вместо линзы использовал вогнутое зеркало. Что касается природы света, то Ньютон избегал категорических суждений по этому вопросу, исходя из своей знаменитой концепции «гипотез я не измышляю». Все же он больше склонялся к корпускулярной теории света, согласно которой свет представляет собой поток частиц (от лат. curpusculum - частица).

Надо сказать, что Ньютон понимал ряд трудностей корпускулярной теории. В частности, она не могла объяснить открытого им же явления периодичности, наблюдаемого в кольцах Ньютона. Поэтому не совсем справедливо считать, что Ньютон отчетливо понимал и трудности волновой теории, которую развивал X. Гюйгенс.

3.Согласно Гюйгенсу, свет - это упругие волны, распространяющиеся наподобие волн на поверхности воды. Пользуясь сформулированным им же принципом (принцип Гюйгенса), он теоретически обосновал законы отражения и преломления света, а также явление двойного лучепреломления, наблюдаемого в некоторых кристаллах, где луч света распадается на два луча. При этом он показал, что скорость света и в более плотной среде (например, воде, стекле) должна быть меньше скорости света с в воздухе или вакууме:

где n - абсолютный показатель преломления данного вещества.

Этот результат принципиально отличался от результата корпускулярной теории, согласно которой свет в более плотной среде должен распространяться быстрее, чем в вакууме. Однако в XVII-XVIII вв. проверить это соотношение экспериментально не удавалось. Лишь в 1850 г. Ж. Фуко поставил опыты по сравнению скорости света в воздухе и воде и доказал, что в воде скорость света в 1,33 раза меньше, чем в воздухе. Это было серьезным аргументом в пользу волновой теории.

4.Исследования явлений интерференции и дифракции света, которые весьма просто объясняются на основе волновых представлений, проведенные Т. Юнгом и особенно О. Френелем (1818-1821), привели к окончательному утверждению волновой природы света. Вместе с тем возникла новая трудность - проблема эфира, т. е. той упругой среды, в которой, как предполагалось, распространяются световые волны. Теория упругого эфира приводила к ряду неразрешимых противоречий, в частности она не согласовывалась с тем экспериментальным фактом, что свет - чисто поперечная волна, не содержащая продольной составляющей (это обнаружилось в явлении поляризации света,). Между тем упругая волна должна обязательно иметь продольную составляющую.

Не удавалось также объяснить, почему планеты и другие небесные тела, двигаясь в упругом эфире, не испытывают сил сопротивления. Именно эти соображения и вызывали у Ньютона критическое отношение к волновой теории, основанной на идее упругого эфира.

5. Эту трудность теоретически удалось разрешить Дж. К. Максвеллу, который в 1863-1864 гг. пришел к выводу, что свет - это электромагнитные волны в диапазоне примерно от 780 до 400 нм, а Г. Герц доказал это экспериментально. При этом Максвелл исходил из двух твердо установленных фактов: во-первых, скорость света в вакууме совпадает со скоростью электромагнитных волн, во-вторых, световые волны, как и электромагнитные, строго поперечные.

Трудами Максвелла был заложен фундамент современных представлений о природе света, а само учение о свете - оптика - оказалось разделом электромагнетизма. За сто с лишним лет, прошедших со дня открытия Максвелла, на основе электромагнитных представлений были объяснены все известные в оптике волновые явления.

6. В начале XX в. было обнаружено, что свет обладает квантовыми свойствами; он состоит из отдельных порций - квантов, или фотонов, причем в некоторых отношениях фотоны ведут себя как частицы. Однако это не есть возврат к старой корпускулярной теории - фотоны не являются обычными механическими частицами, они обладают двойственными корпускулярно-волновыми свойствами, характеризующими их квантовую природу. Открытие квантовых свойств света нисколько не препятствует применению электромагнитной волновой теории для объяснения ряда оптических явлений.



Превращения света

Сделаем простой и эффектный оптический опыт. Положим на дно пустого стеклянного стакана металлическое кольцо или монету и поставим стакан так, чтобы его край мешал нам видеть их сверху. Начнем наливать в стакан воду. Мы с удивлением обнаружим, что кольцо или монета начнут появляться из-за края стакана. Трудно удержаться, чтобы не посмотреть на стакан сбоку: нет, кольцо или монета по-прежнему спокойно лежат на дне, а ведь нам казалось, что они всплывают. Всплывают, повинуясь таинственному оптическому закону преломления света. Только что рассказанный опыт впервые описал великий геометр Евклид в III веке до нашей эры.

Размышляли об искажении пути световых лучей при переходе из воздуха в воду, из воды в стекло (и наоборот) и другие крупные ученые древности - Аристотель, Птолемей, Клеомед. Они первыми начали изучать отражение и преломление лучей на границе двух оптических сред. Птолемей даже измерил, как отклоняется световой луч от первоначального пути при переходе из воздуха в воду, с помощью опущенного в воду диска с делениями и подвижными линейками, вращающимися вокруг центра диска. По данным Птолемея, если падающий луч отклоняется в воздухе от вертикали на 50 градусов, то угол между вертикалью к поверхности раздела двух сред и преломленным лучом в воде составляет 35 градусов. Измерения, сделанные в наше время, через 18 веков после исследований Птолемея, дали для преломленного луча цифру 34 градуса и 3 минуты. Неплохой точности измерений достигли древнегреческие ученые!

Еще до нашей эры был установлен закон отражения от зеркальной поверхности: угол падения равен углу отражения (оба угла отсчитываются от вертикали к поверхности). Этому закону подчиняются любые зеркала: металлические и стеклянные, плоские, выпуклые и вогнутые. С помощью этого закона, впервые сформулированного в труде Евклида «Катоптрика» (от греческого слова «катоптрон» - зеркало), ученые научились рассчитывать форму и размер изображений в зеркалах, определять фокус вогнутых зеркал - жаркую точку, где сходятся отраженные таким зеркалом солнечные лучи.

Древнегреческие исследователи природы доказали, что при переходе из менее плотной среды (воздуха) в более плотную (стекло, воду) световой луч отклоняется от вертикали к поверхности раздела двух сред на меньший угол, чем луч падающий. Они понимали, что уловленную ими закономерность можно выразить в виде четко сформулированного простого закона, но сделать это удалось лишь в первой половине XVII века Виллебро- ду, Снеллиусу и Рене Декарту.

Падающий и преломленный лучи лежат в одной плоскости для всех углов падения. Отношение синуса угла падения к синусу угла преломления есть величина постоянная и равная показателю преломления одной среды по отношению к другой. Например, относительно воздуха вода имеет показатель преломления - 1,33, а кварцевое стекло - 1,52.

Прошло еще полвека, и ученые открыли, что явление преломления света связано с изменением скорости света при переходе из одной среды в другую.

Показатель преломления больше единицы означает, что луч света, попадая в более плотную среду, немного замедляет свой стремительный бег.

Почему уменьшение скорости приводит к изменению направления лучей?

На первый взгляд это не кажется очевидным, и на помощь полезно призвать образное сравнение. Например, с автомобилем, прямолинейный путь которого, как свидетельствует печальный опыт некоторых водителей, заметно искажается при резком торможении на скользкой дороге... Или часто приводимая аналогия с отрядом солдат, идущих по ровной гладкой дороге, после которой (под большим углом к дороге) внезапно начинается рыхлое поле. Солдаты, вступившие на поле, естественно, замедляют ход, и те, кто еще идет по ровной дороге, начинают их догонять. Затем и они вступят на поле, скорость всех снова сравняется, но идти вся колонна будет уже немного отклонившись от первоначального направления. Как говорил в своей речи при получении Нобелевской премии в 1933 году известный физик Э. Шредингер, описывая движение светового луча в среде с переменной плотностью с помощью того же примера с отрядом солдат: «...и поворот фронта осуществится сам собой».

Преломление лучей на границе двух прозрачных сред полностью обратимо: когда луч переходит из более плотной среды, например воды, льда, стекла, в менее плотную, в воздух, то он сильнее отклонится от вертикали, чем первоначальный луч.

Вы догадываетесь, что здесь скрывается одна очень интересная техническая возможность, которую только во второй половине XX века научились по-настоящему использовать. Если луч из стекла в воздух направлять под все большим углом к вертикали, то можно наконец добиться такого положения, что преломленный луч сначала заскользит вдоль поверхности раздела, а затем и вовсе останется в стекле, начнет отражаться обратно. То же самое произойдет при переходе луча из стекла с высоким показателем преломления в стекло с низким показателем преломления.

Явление полного отражения лучей от границы двух прозрачных сред сначала воспринималось просто как забавный оптический парадокс. Ведь мы привыкли к тому, что сильно отражать свет могут только хорошо отполированные металлы и блестящие пленки, например, алюминия или серебра. И вдруг, соединив два прозрачных стекла, получаем поверхность, которая не на 89%, как алюминий, и не на 94%, как серебро, а на все 100% отражает солнечные лучи! С этим оптическим явлением можно познакомиться не только в физической лаборатории. Для этого достаточно... нырнуть в морскую или речную воду (лучше в летний солнечный день), открыть под водой глаза и посмотреть из воды наверх - на зыбкую, волнующуюся водную поверхность. Мы увидим серебристые блики, которые на некотором расстоянии от нас сольются в переливающийся блестящий слой, будто к поверхности воды над нами кто-то прислонил серебряное зеркало.

Древнеримский ученый Плиний в своей «Естественной истории», написанной девятнадцать веков тому назад, рассказывает, что ловцы жемчуга, которым мешали серебристые блики, набирали перед погружением в рот оливковое масло и на дне выпускали его изо рта. Пленка масла растекалась по поверхности моря, яркость бликов резко уменьшалась, и ныряльщики гораздо лучше видели все, что лежит на дне моря. Сейчас мы можем объяснить эту интуитивную техническую находку с научной точки зрения: показатель преломления оливкового масла больше показателя преломления воды, а при переходе лучей из менее плотной среды в более плотную полного отражения света не происходит даже при очень больших углах падения света. Обычное же отражение от границы вода - воздух или вода - оливковое масло совсем невелико, не больше 3 - 4%.



Явления, связанные с отражением света

Предмет и его отражение

То, что отраженный в стоячей воде пейзаж не отличается от реального, а только перевернут "вверх ногами" далеко не так.

Если человек посмотрит поздним вечером, как отражаются в воде светильники или как отражается берег, спускающийся к воде, то отражение покажется ему укороченным и совсем "исчезнет", если наблюдатель находится высоко над поверхностью воды. Также никогда нельзя увидеть отражение верхушки камня, часть которого погружена в воду.

Пейзаж видится наблюдателю таким, как если бы на него смотрели из точки, находящейся на столько глубже поверхности воды, насколько глаз наблюдателя находится выше поверхности. Разница между пейзажем и его изображением уменьшается по мере приближения глаза к поверхности воды, а так же по мере удаления объекта.

Часто людям кажется, что отражение в пруду кустов и деревьев отличается большей яркостью красок и насыщенностью тонов. Эту особенность также можно заметить, наблюдая отражение предметов в зеркале. Здесь большую роль играет психологическое восприятие, чем физическая сторона явления. Рама зеркала, берега пруда ограничивают небольшой участок пейзажа, ограждая боковое зрение человека от избыточного рассеянного света, поступающего со всего небосвода и ослепляющего наблюдателя, то есть он смотрит на небольшой участок пейзажа как бы через темную узкую трубу. Уменьшение яркости отраженного света по сравнению с прямым облегчает людям наблюдение неба, облаков и других яркоосвещенных предметов, которые при прямом наблюдении оказывается слишком ярким для глаза. Отражают свет любые поверхности, не только гладкие. Именно благодаря этому мы видим все тела. Поверхности, которые отражают большую часть светового потока, выглядят светлыми или белыми. Поверхности, которые поглощают большую часть света, выглядят тёмными или черными. Если пучок параллельных световых лучей падает на шершавую поверхность (даже если шероховатости микроскопически малы, как на поверхности листка бумаги) свет отражается в различных направлениях, то есть отраженные лучи не будут параллельными, поскольку углы падения лучей на неровности поверхности разные. Такое отражение света называют рассеянным или диффузным. Закон отражения выполняется и в этом случае, но на каждом маленьком участке поверхности. Из-за диффузного отражения во всех направлениях обычный предмет можно наблюдать под разными углами. Стоит сдвинуть голову в сторону, как из каждой точки предмета в глаз будет попадать другой пучок отраженных лучей. Но если узкий пучок света падает на зеркало, то вы увидите его только в том случае, если глаз занимает положение, для которого выполняется отражения. Этим и объясняются необычные свойства зеркал. (Используя аналогичные аргументы, Галилей показал, что поверхность Луны должна быть шероховатой, а не зеркально гладкой, как полагали некоторые.)

Все несветящиеся тела, освещаемые каким-нибудь источником, становятся видимыми только благодаря рассеиваемому ими свету. Хорошо отшлифованную поверхность стекла, поверхность спокойной воды трудно увидеть потому, что такие поверхности рассеивают очень мало света. Мы видим в них чёткие изображения окружающих освещенных предметов. Однако стоит только поверхности зеркала покрыться пылью, а поверхности воды зарябить, как они становятся хорошо видимыми.

Солнечный «зайчик»

Известно, что в солнечный день при помощи зеркала можно получить световой «зайчик» на стене, на полу или потолке.

Объясняется это тем, что пучок света, падая на зеркало, отражается от него, то есть изменяет направление. Световой «зайчик» - это след отражённого пучка света на каком-либо экране. Опыт показывает, что свет всегда отражается от границы, разделяющей две среды разной оптической плотности.

Сверкание алмазов и самоцветов

В Кремле существует выставка алмазного фонда России.

В зале свет слегка приглушен. В витринах сверкают творения ювелиров. Здесь можно увидеть такие алмазы, как «Орлов», «Шах», «Мария», «Валентина Терешкова».

Секрет прелестной игры света в алмазах, заключается в том, что этот камень имеет высокий показатель преломления и вызывает разложение белого света на простые цвета. Это явление называется дисперсией.

Кроме того, игра света в алмазе зависит от правильности его огранки. Грани алмаза многократно отражают свет внутри кристалла. Вследствие большой прозрачности алмазов высокого класса свет внутри них почти не теряет своей энергии, а только разлагается на простые цвета, лучи которых затем вырываются наружу в различных, самых неожиданных направлениях. При повороте камня меняются цвета, исходящие из камня, и кажется, что сам он является источником многих ярких разноцветных лучей.

Встречаются алмазы, окрашенные в красный, голубоватый и сиреневый цвета. Сияние алмаза зависит от его огранки. Если смотреть сквозь хорошо ограненный водяно-прозрачный бриллиант на свет, то камень кажется совершенно непрозрачным, а некоторые его грани выглядят просто черными. Это происходит потому, что свет, претерпевая полное внутреннее отражение, выходит в обратном направлении или в стороны.

Если смотреть на верхнюю огранку со стороны света, она сияет многими цветами, а местами блестит. Яркое сверкание верхних граней бриллианта называют алмазным блеском. Нижняя сторона бриллианта снаружи кажется как бы посеребренной и отливает металлическим блеском.

Явления дисперсии света объясняют многообразием красок природы. Целый комплекс оптических экспериментов с призмами в XVII веке провел английский ученый Исаак Ньютон. Эти эксперименты показали, что белый свет не является основным, его надо рассматривать как составной («неоднородный»); основными же являются различные цвета («однородные» лучи, или «монохроматические» лучи). Разложение белого света на различные цвета происходит по той причине, что каждому цвету соответствует своя степень преломляемости. Эти выводы, сделанные Ньютоном, согласуются с современными научными представлениями.

Появление «призрака» на сцене театра

На передней части сцены ставится огромное плоское зеркало. Актёр, облачённый в костюм привидения, находится в углублении под сценой. При сильном освещении актёра отражённый свет будет падать на зеркало и почти целиком отражаться в зрительный зал. Зрители в слабо освещённом зале зеркала не видят, а замечают только отражение актёра, принимая его за призрак.

Цвет неба и зорь.

Изменение спектрального состава света, отраженного или рассеянного поверхностью тел, связано с наличием избирательного поглощения и отражения.

В природе играет большую роль еще одно явление, ведущее к изменению спектрального состава солнечного света. Свет, доходящий до наблюдателя от участков безоблачного небесного свода, далеких от Солнца, характеризуется довольно насыщенным голубым или даже синим оттенком. Несомненно, что свет неба есть солнечный свет, рассеиваемый в толще воздушной атмосферы и поэтому доходящий до наблюдателя со всех сторон, даже по направлениям, далеким от направления на Солнце. Рисунок поясняет происхождение рассеянного света неба.

Теоретическое исследование и опыты показали, что такое рассеяние происходит благодаря молекулярному строению воздуха; даже вполне свободный от пыли воздух рассеивает солнечный свет.

. Происхождение цвета неба (свет Солнца, рассеянный атмосферой). До поверхности Земли (например, точки А) доходит как прямой свет Солнца, так и свет, рассеянный в толще атмосферы. Цвет этого рассеянного света и называется цветом неба.

Спектр рассеянного воздухом света заметно отличается от спектра прямого солнечного света: в солнечном свете максимум энергии приходится на желто- зеленую часть спектра, а в свете неба максимум передвинут к голубой части. Причина лежит в том, что короткие световые волны рассеиваются значительно сильнее длинных. По расчетам английского физика Джона Стретта лорда Рэлея (1842-1919), подтвержденным измерениями, интенсивность рассеянного света обратно пропорциональна четвертой степени длины волны, если рассеивающие частицы малы по сравнению с длиной волны света, следовательно, фиолетовые лучи рассеиваются почти в 9 раз сильнее красных. Поэтому желтоватый свет Солнца при рассеянии превращается в голубой цвет неба.Так обстоит дело при рассеянии в чистом воздухе (в горах, над океаном). Наличие в воздухе сравнительно крупных частичек пыли (в городах) добавляет к рассеянному голубому свету свет, отраженный частичками пыли, т. е. почти неизмененный свет Солнца. Благодаря этой примеси цвет неба становится в этих условиях более белесоватым.

Преимущественное рассеяние коротких волн приводит к тому, что доходящий до Земли прямой свет Солнца оказывается более желтым, чем при наблюдении с большой высоты. На пути через толщу воздуха свет Солнца частично рассеивается в стороны, причем сильнее рассеиваются короткие волны, так что достигший Земли свет становится относительно богаче излучением длинноволновой части спектра. Это явление особенно резко сказывается при восходе и закате Солнца (или Луны), когда прямой свет проходит значительно большую толщу воздуха). Благодаря этому Солнце и Луна на восходе (или закате) имеют медножелтый, иногда даже красноватый оттенок. В тех случаях,

Объяснение красного цвета Луны и Солнца на восходе и закате: «Si - светило в зените - короткий путь в атмосфере (АВ)\ S2 - светило на горизонте - длинный путь в атмосфере (СВ)

когда в воздухе имеются очень мелкие (значительно меньшие длины волны) частички пыли или капельки влаги (туман), рассеяние, вызываемое ими, также идет по закону,

Белый

Рассеяние света мутной жидкостью: падающий свет - белый, рассеянный свет - синеватый, проходящий свет - красноватый

близкому к закону Рэлея, т. е. по преимуществу рассеиваются короткие волны. В этих случаях восходящее и заходящее Солнце может быть совершенно красным. В красный же цвет окрашиваются и плавающие в атмосфере облака. Таково происхождение прекрасных розовых и красных оттенков утренней и вечерней зорь.

Можно наблюдать описанное изменение цвета при рассеянии, если пропустить пучок света от фонаря через сосуд, наполненный мутной жидкостью, т. е. жидкостью, содержащей мелкие взвешенные частицы (например, водой с несколькими каплями молока). Свет, идущий в стороны (рассеянный), заметно синее, чем прямой свет фонаря. Если толща мутной жидкости довольно значительна, то свет, прошедший сквозь сосуд, теряет при рассеянии столь значительную часть коротковолновых лучей (синих и фиолетовых), что оказывается оранжевым и даже красным.

В 1883 г. произошло сильнейшее извержение вулкана на острове Кракатау, наполовину разрушившее остров и выбросившее в атмосферу огромное количество мельчайшей пыли. На протяжении нескольких лет пыль эта, развеянная воздушными течениями на огромные расстояния, засоряла атмосферу, обусловливая интенсивные красные зори.



Явления, связанные с преломлением света

Радуга

Радуга - это оптическое явление, связанное с преломлением световых лучей на многочисленных капельках дождя. Однако далеко не все знают, как именно преломление света на капельках дождя приводит к возникновению на небосводе гигантской многоцветной дуги.

Прежде всего, заметим, что радуга может наблюдаться только в стороне, противоположной Солнцу. Если встать лицом к радуге, то Солнце окажется сзади. Радуга возникает, когда Солнце освещает завесу дождя. По мере того как дождь стихает, а затем прекращается, радуга блекнет и постепенно исчезает. Наблюдаемые в радуге цвета чередуются в такой же последовательности, как и в спектре, получаемом при пропускании пучка солнечных лучей через призму. При этом внутренняя (обращенная к поверхности Земли) крайняя область радуги окрашена в фиолетовый цвет, а внешняя крайняя область - в красный. Нередко над основной радугой возникает еще одна (вторичная) радуга - более широкая и размытая. Цвета во вторичной радуге чередуются в обратном порядке: от красного (крайняя внутренняя область дуги) до фиолетового (крайняя внешняя область). Для наблюдателя, находящегося на относительно ровной земной поверхности, радуга появляется при условии, что угловая высота Солнца над горизонтом не превышает примерно 42°. Чем ниже Солнце, тем больше угловая высота вершины радуги и тем, следовательно, больше наблюдаемый участок радуги. Вторичная радуга может наблюдаться, если высота Солнца над горизонтом не превышает примерно 52. Радуга может рассматриваться как гигантское колесо, которое как на ось надето на воображаемую прямую линию, проходящую через Солнце и наблюдателя.

Таким образом, положение радуги по отношению к окружающему ландшафту зависит от положения наблюдателя по отношению к Солнцу, а угловые размеры радуги определяются высотой Солнца над горизонтом. Наблюдатель есть вершина конуса, ось которого направлена по линии, соединяющей наблюдателя с Солнцем. Радуга есть находящаяся над линией горизонта часть окружности основания этого конуса. При передвижениях наблюдателя указанный конус, а значит, и радуга, соответствующим образом перемещаются. Здесь необходимо сделать два пояснения. Во-первых, когда мы говорим о прямой линии, соединяющей наблюдателя с Солнцем, то имеем в виду не истинное, а наблюдаемое направление на Солнце. Во-вторых, когда мы говорим о радуге над линией горизонта, то имеем в виду относительно далекую радугу - когда завеса дождя удалена от нас на несколько километров. Можно наблюдать также и близкую радугу, например радугу, возникающую на фоне большого фонтана. В этом случае концы радуги как бы уходят в землю.

Гало

Гало - это более редкое оптическое явление, поэтому многие из вас, наверное, не только не видели его, но и не слышали о нём. Между тем, гало и радуга имеют одну и ту же физическую природу. Гало - это светящийся круг вокруг Солнца или Луны.

Гало возникает в результате преломления света в шестигранных ледяных кристалликах, застилающих пеленою светило. Такие круги света возникают в морозную ночь около уличных фонарей.

Наибольшей яркостью обладают лучи, отклонённые кристалликами льда на 22° от начального направления. Такие лучи попадают в глаз наблюдателя, и он видит светило смещённым на 22°. При непрерывном движении большого числа кристалликов глаз видит круг из этих лучей.

Глория

Одно из впечатляющих явлений природы - брокенский призрак;- впервые описано в 1891 г. по наблюдениям на горе Брокен в горном массиве Гарц. Утром, когда солнечные лучи падают почти горизонтально, можно подняться на холм и увидеть свою собственную тень на слое тумана или облаке, окутывающих горные вершины. Тень окружена ярко окрашенными концентрическими кольцами - красное кольцо в наружной области и фиолетовое во внутренней. Это есть глория (от лат. gloria - украшение).

Громадные призрачные фигуры людей, окружённые многоцветными кольцами, иногда наблюдают альпинисты в горах. Они производят мистическое впечатление. Суеверным людям эти тени кажутся выходцами из потустороннего мира.

Между тем, это тени самих альпинистов. Они возникают, когда солнце находится позади людей, а впереди - густые облака. Тогда на облаках, как на экране, появляются огромные фигуры.

Жители небольшого бельгийского городка Вервье со страхом и удивлением наблюдали однажды утром изображение на небе военного сражения. Позже они узнали, что это было утро сражения при Ватерлоо (июнь, 1815 г.). По прямой между Вервье и Ватерлоо более 100 км. Облако пыли и дыма с поля боя послужило экраном, видимым на большом расстоянии.

Глория возникает при рассеянии света назад. Невозможно объяснить эффект глории в рамках геометрической оптики. В 1957 г. голландец ван де Хюлст предположил, что глория возникает при почти скользящем падении луча. После преломления и одного отражения образуется преломленная волна, которая распространяется по небольшому участку поверхности капли и покидает ее.

Миражи

Слово «мираж» французского происхождения и имеет два значения: отражение и обманчивое явление (mirage). Подобно сказке, мираж восхищает людей, влечёт к себе и бесследно исчезает, когда к нему пробуют приблизиться.

Мираж представляет собой изображение реально существующего на земле предмета, часто увеличенное и сильно искажённое. Миражи бывают верхние, нижние и сложные...

Миражи - это отражения каких-то вещей или явлений на поверхности раскаленного песка, асфальта, моря и т.д.

Как мне стало известно, что это происходит от того, что в разных слоях воздуха температура разная, а разность температуры действует как зеркало.

Мираж - это нечто иное, как отраженные предметы или явления, которые мы принимаем за реальность.

Нижний мираж

Наблюдается при очень большом вертикальном градиенте температуры (падении её с высотой) над перегретой ровной поверхностью, часто пустыней или асфальтированной дорогой. Мнимое изображение неба создаёт при этом иллюзию воды на поверхности. Так, уходящая вдаль дорога в жаркий летний день кажется мокрой.

Верхний мираж

Наблюдается над холодной земной поверхностью при инверсионном распределении температуры (температура воздуха понижается с повышением высоты).

Верхние миражи случаются в целом реже, чем нижние, но чаще всего бывают более стабильными, поскольку холодный воздух не имеет тенденцию двигаться вверх, а теплый - вниз.

Верхние миражи являются наиболее распространенными в полярных регионах, особенно на больших ровных льдинах со стабильной низкой температурой. Они также наблюдаются в более умеренных широтах, хотя в этих случаях, они слабее, менее четкие и стабильные. Верхний мираж может быть прямым или перевернутым, в зависимости от расстояния до истинного объекта и градиента температуры. Часто изображение выглядит как фрагментарная мозаика прямых и перевернутых частей.

Верхние миражи могут иметь поразительный эффект за счет кривизны Земли. Если изгиб лучей примерно такой же, как кривизна Земли, лучи света могут перемещаться на большие расстояния, в результате чего наблюдатель видит объекты, находящиеся далеко за горизонтом. Это наблюдалось и задокументировано в первый раз в 1596 году, когда судно под командованием Виллема Баренца в поисках Северо-восточный прохода застряло во льдах на Новой Земле. Экипаж был вынужден пережидать полярную ночь. При этом восход Солнца после полярной ночи наблюдался на две недели раньше, чем ожидалось. В 20-м веке это явление было объяснено, и получило название "Эффект Новой Земли".

Таким же образом, корабли, находящиеся на самом деле так далеко, что они не должны быть видны над горизонтом, могут появиться на горизонте, и даже над горизонтом, как верхние миражи. Это может объяснить некоторые истории о полетах кораблей или прибрежных городов в небе, как описано некоторыми полярниками.

Боковой мираж

О существовании бокового миража обычно даже не подозревают. Это - отражение от нагретой отвесной стены.

Такой случай описан одним французским автором. Приближаясь к форту крепости, он заметил, что ровная бетонная стена форта вдруг заблистала, как зеркало, отражая в себе окружающий ландшафт, почву, небо. Сделав еще несколько шагов, он заметил ту же перемену и с другой стеной форта. Казалось, будто серая неровная поверхность внезапно заменяется полированной. Стоял знойный день, и стены должны были сильно накалиться, в чем и заключалась разгадка их зеркальности. Оказалось, что мираж наблюдается всякий раз, когда стена достаточно нагреется солнечными лучами. Удалось даже сфотографировать это явление.

В знойные летние дни следовало бы обращать внимание на накалившиеся стены больших зданий и искать, не обнаружатся ли явления миража. Без сомнения, при некотором внимании число замеченных случаев бокового миража должно участиться.

Фата-моргана

Сложные явления миража с резким искажением вида предметов носят название Фата-моргана.

Фата-моргана (итал. fata morgana), сложное оптическое явление в атмосфере, состоящее из нескольких форм миражей, при котором отдалённые предметы видны многократно и с разнообразными искажениями. Фата-моргана возникает, когда в нижних слоях атмосферы образуется несколько чередующихся слоев воздуха различной плотности, способных давать зеркальные отражения. В результате отражения, а также и преломления лучей реально существующие предметы дают на горизонте или над ним по нескольку

искажённых изображений, частично налагающихся друг на друга и быстро меняющихся во времени, что и создаёт причудливую картину такого миража.

Объёмный мираж

В горах очень редко, при стечении определённых условий, можно увидеть «искажённого себя» на довольно близком расстоянии. Объясняется это явление наличием в воздухе «стоячих» паров воды.

Полярные сияния

Одним из красивейших оптических явлений природы является полярное сияние.

В большинстве случаев полярные сияния имеют зеленый или сине-зеленый оттенок с изредка появляющимися пятнами или каймой розового или красного цвета

Полярные сияния наблюдают в двух основных формах - в виде лент и в виде облакоподобных пятен. Когда сияние интенсивно, оно приобретает форму лент. Теряя интенсивность, оно превращается в пятна. Однако многие ленты исчезают, не успев разбиться на пятна. Ленты как бы висят в темном пространстве неба, напоминая гигантский занавес или драпировку, протянувшуюся обычно с востока на запад на тысячи километров. Высота этого занавеса составляет несколько сотен километров, толщина не превышает нескольких сотен метров, причем так нежен и прозрачен, что сквозь него видны звезды. Нижний край занавеса довольно резко и отчетливо очерчен и часто подкрашен в красный или розоватый цвет, напоминающий кайму занавеса, верхний - постепенно теряется в высоте и это создает особенно эффектное впечатление глубины пространства.сияния

Полярные сияния возникают вследствие бомбардировки верхних слоёв атмосферы заряженными частицами, движущимися к Земле вдоль силовых линий геомагнитного поля из области околоземного космического пространства, называемой плазменным слоем. Проекция плазменного слоя вдоль геомагнитных силовых линий на земную атмосферу имеет форму колец, окружающих северный и южный магнитные полюса. Выявлением причин, приводящим к высыпаниям заряженных частиц из плазменного слоя, занимается космическая физика. Экспериментально установлено, что ключевую роль в стимулировании высыпаний играет ориентация межпланетного магнитного поля и величина давления плазмы солнечного ветра.

При столкновении энергичных частиц плазменного слоя с верхней атмосферой происходит возбуждение атомов и молекул газов, входящих в её состав. Излучение возбуждённых атомов в видимом диапазоне и наблюдается как полярное сияние. Спектры полярных сияний зависят от состава атмосферы планеты: так, например, для Земли наиболее яркими являются линии излучения возбуждённых кислорода и азота в видимом диапазоне. Спектральное исследование показывает, что зеленое и красное свечение принадлежит возбужденным атомам кислорода, инфракрасное и фиолетовое - ионизованным молекулам азота. Некоторые линии излучения кислорода и азота образуются на высоте 110 км, а красное свечение кислорода - на высоте 200-400 км. Другим слабым источником красного света являются атомы водорода, образовавшие в верхних слоях атмосферы из протонов прилетевших с Солнца. Захватив электрон, такой протон превращается в возбужденный атом водорода и излучает красный свет

Вспышки сияний происходят обычно через день-два после вспышек на Солнце. Это подтверждает связь между этими явлениями. Исследование при помощи ракет показало, что в местах большей интенсивности сияний имеется более значительная ионизация газов электронами.

В последнее время ученые установили, что полярные сияния более интенсивны у берегов океанов и морей

Но научное объяснение всех явлений, связанных с полярными сияниями, встречает ряд трудностей. Например, неизвестен точно механизм ускорения частиц до указанных энергий, не вполне ясны их траектории в околоземном пространстве, не все сходится количественно в энергетическом балансе ионизации и возбуждения частиц, не вполне ясен механизм образования свечения различных видов, неясно происхождение звуков.



Выводы

Я выполнил исследовательский проект по физике на тему «Оптика и оптические явления в природе», так как эта тема показалась мне интересной и увлекательной, ведь Оптика окружает нас везде.

Осуществление данного проекта позволило мне развить свои навыки работы с дополнительной литературой, умение проводить эксперименты, проводить анализ полученных результатов, обосновывать итоги исследований.

Сделав, этот проект я многое узнал - что такое Оптика, какие оптические явления бывают в природе и выяснил: почему появляется солнечный «зайчик», что такое радуга, гало, миражи, полярные сияния, чем объясняется цвет неба и зорь. Этот проект открыл во мне новые интересы к физике как увлекательной науке, которая привлекает необычными явлениями и интересными опытами.

Цель - исследовать оптические явления в природе - была мною достигнута. Я расширил свой кругозор и совершил интересное путешествие в мир Оптики. Научное познание природы, ее поэтическое восприятие идут рука об руку, взаимно обогащая друг друга. Знание физики природных явлений позволяет нам еще сильнее ощутить их внутреннюю гармонию и красоту; в свою очередь, ощущение этой красоты есть дополнительный и притом мощный стимул к дальнейшему исследованию, пробуждению интереса к такому предмету как физика.

Практическая ценность работы состоит в том, что полученные материалы могут быть использованы при проведении недели физики в школе, физических турниров, КВНов и т.п. - а также для занятий по ознакомлению с окружающим миром.



Литература

  1. Большая энциклопедия Кирилла и Мефодия, 2006г., CD

  2. Википедия (Свободная энциклопедия), ru.wikipedia.org/wiki/

  3. Загадки природных явлений, scorpicora1.narod.ru/astronomia/sianie.html

  4. Колтун М., Мир физики, издательство «Детская литература», 1987г.

  5. Ландсберг Г.С., Элементарный учебник физики, издательство «Физматлит», 2003г.

  6. Мякишев Г.Я., Буховцев Б.Б., Учебник по физике 11 класс, издательство «Просвещение», 2009г.

  7. Павленко Ю.Г., Начала физики, издательство «Экзамен», 2007г.

  8. Пинский А.А., Граковский Г.Ю., Физика, издательство «Форум», 2012г.





Приложение Опросы

Опросник №1 Солнечный «зайчик»

  1. Что такое Солнечный «зайчик»?

  2. Видел ли ты солнечный «зайчик»?

  3. Почему возникает солнечный «зайчик»?

  4. С помощью какого предмета можно получить солнечный «зайчик»?





Исследование оптических явлений в природе.



Опросник №2 Радуга

  1. Что такое Радуга?

  2. Видел ли ты Радугу?

  3. Бывает ли Радуга без дождя?

  4. Назови все цвета Радуги?

  5. Можно ли получить Радугу дома?





Исследование оптических явлений в природе.



Опросник №3 Мираж

  1. Что такое Мираж?

  2. Видел ли ты Мираж?

  3. Почему возникает Мираж?

  4. Можно ли увидеть Мираж в нашем городе?





Исследование оптических явлений в природе.



Опросник №4 Цвет неба и зорь. Гало. Глория

  1. Какого цвета небо?

  2. Почему небо голубого цвета?

  3. Какого цвета небо на Заре?

  4. Почему небо красное на Заре?

  5. Что такое Гало?

  6. Что такое Глория?





Исследование оптических явлений в природе.



© 2010-2022