Исследовательская работа на тему Солнечный парус

Раздел Физика
Класс -
Тип Другие методич. материалы
Автор
Дата
Формат doc
Изображения Есть
For-Teacher.ru - все для учителя
Поделитесь с коллегами:


Научно-исследовательская работа

На тему

«Солнечный парус»


Исследовательская работа на тему Солнечный парусИсследовательская работа на тему Солнечный парус


Выполнил:

Швец Николай Игоревич

Ученик 10 класса

МБОУ «СОШ №25»

Г. Тулун

Научный руководитель:

учитель физики

Татарникова Надежда Михайловна



ОГЛАВЛЕНИЕ

Введение………………………………………………………………………….3

Солнечный парус………………………………………………………………………………3

Область применения солнечного паруса……………………………………………………………………………..4

Конструкция СП…………………………………………………………………………...…….6

Расчет времени разгона, необходимого

для выхода из сферы притяжения земли……………………………………………………………………...……….8

МОБ( межорбитальный буксир) использующий СП……………………………………………………………………………...…..9

Заключение………………………………………………………………………12

Список литературы…………………………………….…………………………………13





ВВЕДЕНИЕ

Актуальность данной работы в том, что широкой публике мало что известно о солнечном парусе, эта тема поднимается очень редко, и интересна сама ее нетривиальность, не говоря уже о конкретной информации.

Целью исследования является определение эффективности использования СП в областях науки и техники, а так же сравнение эффективности СП с эффективностью традиционных космических аппаратов, доказать что преимущество КА под солнечным парусом по сравнению с КА на ракетном двигателе заключается в более высоком КПД. Для достижения поставленной цели, были определены следующие задачи исследования:

1. Рассмотреть вопросы, связанные с использованием СП и современным состоянием работ в этой области.
2. Рассчитать время полета до Марса на КА с СП

3. Рассмотреть конструкцию СП на основе пневмокаркасов.
4. Ознакомиться с расчетами времени разгона КА под солнечным парусом с круговой орбиты до второй космической скорости.
5. Предложить схему разгона МОБ под солнечным парусом с использованием вспомогательных орбитальных КА.



СОЛНЕЧНЫЙ ПАРУС

Идея солнечного паруса (СП), использующего в качестве движущей силы давление солнечного света не нова. Она впервые возникла в 20-х годах и в течение десятков лет рассматривалась различными авиа и космическими организациями. Наш соотечественник Ф. А. Цандер, известный своими многочисленными трудами в области космонавтики, предложил выводить на орбиту космические зеркала (отражатели) передающие световую энергию Солнца на поверхность Земли для непосредственного использования. Дальнейшее освоение космического пространства, осуществление межпланетных перелетов, вынуждает конструкторов искать принципиально новые решения в построении космических кораблей. Одним из вариантов межпланетного космического корабля является солнечный парус. Плюс солнечного паруса по сравнению с лазерным парусом - солнечный парус не зависит от источника света, а минус - солнечный свет слабее, чем лазерный свет. СП не расходует топливо для разгона; в космосе паруса наполняет не ветер, а давление частиц солнечного света - фотонов. Оно заставляет

парусник непрерывно разгоняться (или тормозить). КА с солнечным парусом будет ускоряться очень не спеша, но со временем сможет достичь невиданных скоростей. Давление фотонов достаточно велико, чтобы КА мог путешествовать между планетами - от Меркурия до Юпитера; для преодоления еще больших расстояний на парус можно направить лазерный луч, запитываемый опять-таки солнечной энергией. Аспекты приложения технологии СП достаточно широки: от удержания спутников в точке стояния на геостационарной орбите до дальних шаттлов, несущих грузы между планетами, астероидами и кометами. Подлетая близко к Солнцу, парусники будущего смогут разгоняться до огромных скоростей, что позволит им сближаться с любым объектом Солнечной системы или, как уже говорилось выше, летать к звездам. Выгоды СП огромны: в сообщении студии «Космос» говорится, что парусник теоретически может летать в 10 раз быстрее, чем станции Уоуадег-1 и -2, которые достигли третьей космической скорости.

ОБЛАСТЬ ПРИМЕНЕНИЯ СОЛНЕЧНОГО ПАРУСА

Область применения солнечного паруса и солнечного парусного корабля огромна. Они могут использоваться для:
- обнаружения геомагнитных бурь,
- исследования нашей Солнечной системы,
- ретрансляции энергии, теле и радиосвязи,
- освещения отдельных районов Земли,
- очистки космоса от технологического «мусора»,
- межпланетных перелетов под солнечным парусом,
- создания крупных антенн в космосе для разведки полезных ископаемых и других полезных задач.

Солнечный парус и солнечный парусный корабль - прогрессивное направление Российской и мировой космонавтики. Его можно использовать в системах обнаружения плазменных штормов. Известно, что геомагнетические штормы могут быть причиной потери космических кораблей, сбоев в GPS (глобальная система позиционирования) сигналов, и даже сбоев наземных электрических сетей. Протоны с высокой энергией даже могут быть летальными для астронавтов, которые находятся в открытом космосе. Точное предсказание таких событий может быть сделано с помощью наблюдения за солнечным ветром. Такое наблюдение может быть осуществлено с помощью магнетометров и детекторов частиц на борту корабля, находящегося между Солнцем и Землей. Это можно сделать с помощью солнечного парусного корабля. Кроме того, СП можно использовать для межпланетных перелетов. Так, при полете к Марсу корабль выводится сначала ракетой - носителем на начальную низкую околоземную орбиту высотой около 200 км. Затем при помощи блока он переводится на стартовую орбиту высотой в несколько тысяч километров.

Продолжительность этих операций составит около 48 ч, после чего производится развертывание парусов, и под действием солнечного света корабль начинает разгон по спиральной траектории. Управляя ориентацией паруса, добиваются превращения орбиты в эллиптическую с постоянно возрастающим апогеем. Было рассчитано, что длительность разгона к Луне в этом случае составит около 120 суток. Время старта, а затем разгона выбирается так, чтобы парусник вышел в заданную область гравитационного поля Луны. Это позволит решить следующую задачу - перевести СПК на траекторию межпланетного полета к Марсу. Взаимное расположение Земли и Марса на этом этапе тоже подбирается так, чтобы вначале уменьшить период гелиоцентрической орбиты («торможение»), а затем афелий орбиты увеличить, чтобы достичь орбиты Марса («разгон»). Суммарное время, требуемое СПК для достижения Марса, составит около 1,9 года.

Обозначим давление света на орбите Земли Pо. Известно, что давление света меняется с расстоянием по закону: P ~ 1/R2. Найдем давление света посередине расстояния между Землей и Марсом: P1/2 = Po (Rз/0.5(Rз+Rм))1/2. Здесь Rз - радиус орбиты Земли = 1.5* 1011 м, Rм - радиус орбиты Марса = 2.28 *1011 м. Для простоты будем считать, что в течение времени движения космического аппарата от Земли до Марса Земля и Марс находятся на одной прямой, проведенной из центра Солнца. На самом деле это, конечно, не так. Будем считать, что на всем пути от Земли до Марса на парус действует постоянное давление света, равное P1/2 . Пусть площадь паруса равна S. Тогда сила, действующая на парус (т.е. на космический аппарат) F =P1/2 S. Из второго закона Ньютона найдем ускорение, с которым будет двигаться космический аппарат массы M: a = F/M = P1/2 S/M. Используя известное соотношение из курса физики (Механика) s = at2/2, где s - пройденный путь за время t (в нашем случае s= Rм - Rз) найдем время движения космического аппарата от Земли до Марса под действием давления солнечного света:

t = (2 (Rм - Rз)/ (P1/2 S/M))1/2 = (2 ( 2,28*1011 - 1,5*1011)/0,0000045*10)1/2 = 5887406с ~1,9 года



КОНСТРУКЦИЯ СП

Роторный солнечный парус состоит из восьми лопастей. Каждая в раскрытом виде представляет собой мембрану, натянутую на пневмокаркас трубчатого сечения диаметром 150 мм, изготовленный из полиэтишертерафталатной пленки толщиной 20 мкм и погонной массой 28 г/м2. Площадь натянутой на каркас мембраны 75 м2. Она изготовлена из металлизированной с одной стороны полиэтилтертерафталатной плёнки толщиной 5мкм и погонной массой 7 г/м2. Металлизированная поверхность мембраны обращена к Солнцу. Пневмокаркас служит для организации процесса развертывания лопасти СП, поддержания заданной формы и обеспечения жесткости при передаче сил и моментов от давления солнечного ветра на лопасть. Жесткость пневмокаркаса и его устойчивость обеспечивается остаточным давлением рабочего газа (азота) внутри пневмокаркаса, составляющим около 7000 Па. Лопасть развертывается из рулона и приобретает форму при срабатывании пирозамков.


Исследовательская работа на тему Солнечный парус

Исследовательская работа на тему Солнечный парус


Схема запуска солнечного паруса

на примере cosmos-1

Аппарат с СП, наряду с разгонной двигательной установкой (РДУ) и защитным кожухом, входит в состав головного блока (ГБ) ракеты-носителя. Конструктивная основа КАСП - приборная платформа, на которой крепятся РДУ с смонтированной на ней системой отделения, защитный кожух, блок парусов, приборное оборудование и служебные системы. Приборная платформа устанавливается на адаптер (раму) РН и соединяется с ним пирозамками. На ее герметичном днище размещаются узлы крепления РДУ, антенна 400 МГц, антенна GPS, антенны S-диапазона, солнечные датчики, две фотокамеры, газовые сопла системы ориентации и стабилизации, а также панели фотоэлектрических преобразователей. На оставшееся свободное пространство днища с наружной и внутренней стороны нанесены покрытия с оптическими свойствами, обеспечивающими требуемый тепловой режим. С внутренней стороны платформы размещаются радиокомплексы ДМ и S-диапазонов, приемник GPS, бортовой компьютер, датчик микроускорений, блок ДУСов, аккумуляторная батарея, два газовых баллона, ресивер и арматура СОиС. На верхнем фланце платформы установлен блок парусов - стойка, на которой размещены сборки парусов приводами, системой наполнения, механизмы фиксации и расчековки. До выведения на рабочую орбиту КАСП закрыт защитным радио-прозрачным кожухом. Масса КАСП перед включением апогейного двигателя составляет 130 кг, перед раскрытием солнечного паруса - 63.7 кг.


Исследовательская работа на тему Солнечный парус



РАСЧЕТ ВРЕМЕНИ РАЗГОНА, НЕОБХОДИМОГО ДЛЯ ВЫХОДА ИЗ СФЕРЫ ПРИТЯЖЕНИЯ ЗЕМЛИ

В качестве примера рассмотрим разгон до параболической скорости КА, снабженного солнечным парусом при отлете с геостационарной орбиты. Пусть стартовая масса КА равна 2000 кг, площадь СП равна 10000 м2 , погонная масса материала СП = 7 г/м2 . Тогда имеем: mпар= S · СП = 10000 м2 · 7 г/м2= 70000 г = 70 кг


Исследовательская работа на тему Солнечный парус

Полная сила, действующая на СП равна F= S · p = 10000 · 10-5 = 0,1 H; Определим ускорение КА F = m · а;


Исследовательская работа на тему Солнечный парус

Найдем характеристическую скорость, которую должен развить КА для выхода из сферы притяжения Земли


Исследовательская работа на тему Солнечный парус


Исследовательская работа на тему Солнечный парус


Исследовательская работа на тему Солнечный парус

Вычислим время разгона


Исследовательская работа на тему Солнечный парус


Исследовательская работа на тему Солнечный парус


МОБ( межорбитальный буксир) ИСПОЛЬЗУЮЩИЙ СП

МОБ использующий солнечный парус - это космический аппарат нового типа с массой в несколько сотен килограммов и площадью парусов в несколько гектаров, движущихся под действием солнечного света, разгоняемый и управляемый автономно, без затрат рабочего тела двигателя. Его конструкция имеет два кольцевых бескаркасных, вращающихся в разные стороны пленочных паруса, поддерживающих свою форму под действием центробежных сил. Управляется и ориентируется корабль за счет использования гироскопических сил. Для этого корабля, осуществляющего полет в космосе, не требуется огромной энергии. Маленькие силы могут медленно и устойчиво разгонять транспортное средство до огромных скоростей. Поскольку энергия имеет массу, солнечный свет, попадающий на тонкую пленку - солнечный парус, обеспечивает такую силу. Притяжение Солнца обеспечивает другую силу. Давление света и гравитация могут носить космические корабли в любое место Солнечной системы. После ускорения в течение года солнечный парус может достичь скорости сто километров в секунду, оставляя сегодняшние ракеты далеко позади. В связи с тем, что такой корабль не может стартовать с Земли, солнечный парус необходимо строить в космосе. Хотя каркас и будет занимать огромную площадь, он (вместе с материалами) будет достаточно легок, чтобы вывести его на орбиту за 1-2 полета космического челнока. При движении по орбите вокруг Земли парус может разгонять КА только на одной половине оборота, на второй половине (встречное по отношению к Солнцу движение) оборота парус необходимо разворачивать вдоль направления солнечных лучей, чтобы избежать торможения. Данный недостаток МОБ на солнечном парусе можно избежать, если использовать дополнительные КА, которые будут собирать солнечный свет и направлять его с помощью передающей антенны на солнечный парус МОБ. Используя несколько таких вспомогательных, постоянно действующих КА с площадью приемных антенн существенно большей, чем у МОБ, можно обеспечить постоянный разгон МОБ. При одинаковом направлении исходных лучей света и сфокусированного луча передающей антенны суммарный импульс, действующий на вспомогательные КА будет равен нулю. Если же направления лучей не совпадают, то возникает необходимость использования на вспомогательных КА реактивных двигателей, например ЭРД, для компенсации неуравновешенного импульса.


Исследовательская работа на тему Солнечный парус


Схема полета МОБ под солнечным парусом. 1- Вспомогательный КА. 2- Антенны приема солнечного излучения. 3- Передающая антенна. 4- Приемная антенна МОБ. 5- МОБ.




















ЗАКЛЮЧЕНИЕ

Идея СП, за почти 100 лет своего существования претерпела определенные изменения. Перспектива в ближайшем будущем запустить высокотехнологичный межзвездный зонд на солнечном парусе со скоростью выше 0,01с очень интригующая. Стоимость зонда на солнечных парусах на много порядков ниже чем стоимость зонда с ракетным двигателем. Теоретически, корабль с солнечным парусом способен достичь скорости в100000 км/с и даже выше. Если бы в 2010 году запустили в космос такой зонд, то (в идеальных условиях) в 2018 он догнал бы "Вояджер-1", которому для этого путешествия потребовался бы 41 год. В настоящее время "Вояджер-1" (запущенный в 1977) находится от нас на расстоянии в 12 световых часов и является самым удаленным от Земли космическим кораблем. Это лишний раз доказывает, что космический аппарат с СП на порядок эффективнее традиционных КА.

Сделать реально работающий, успешно выполняющий конкретные задачи космический аппарат, использующий солнечный парус - значит решить множество технических проблем, продумать и воплотить в жизнь новые инженерные решения и идеи. Возможно, самой волнующей миссией с использованием СП в ближайщее время сможет стать отправка космического аппарата, который раскроет парус вблизи орбиты Венеры или даже Меркурия, а затем отправится за пределы Солнечной системы и за несколько десятилетий достигнет гелиопаузы. Этот аппарат сможет на месте наблюдать взаимодействие солнца с галактикой. Задача это непростая, как и любая работа, связанная с созданием космических кораблей. Но успешные испытания космических парусников говорят о том, что если хорошенько за это взяться, то всё получится.





СПИСОК ЛИТЕРАТУРЫ

1. Энциклопедия " Космонавтика ".
2. Г. Руппе " Введение в астронавтику "
3. Журнал " Новости космонавтики "
4. Журнал "Наука и жизнь"
5. Интернет ресурсы:

ru.wikipedia.org/wiki/%D1%EE%EB%ED%E5%F7%ED%FB%E9_%EF%E0%F0%F3%F1

go2starss.narod.ru/pub/E029_MMKG.html

spacegiraffe.ru/astronomiya/77-sail

spaceregatta.ru/ru/projects/sunlightsailreflectors/61-znamya2

ru.wikipedia.org/wiki/Солнечный_парус

3dnews.ru/news/Solnechniy-parus-zamenit-raketniy-dvigatel-i-dostavit-cheloveka-k-dalekim-planetam/

membrana.ru/particle/3353

membrana.ru/particle/7346

newsland.ru/News/Detail/id/556509/cat/69/





© 2010-2022