Рабочая программа по физике-8

Раздел Физика
Класс 8 класс
Тип Рабочие программы
Автор
Дата
Формат doc
Изображения Нет
For-Teacher.ru - все для учителя
Поделитесь с коллегами:

Пояснительная записка

Программа по физике для основной школы составлена на основе Федерального государственного образовательного стандарта основного общего образования Российской Федерации (приказ Минобрнауки РФ №1897 от 17.12.2010г.), Федерального закона «Об образовании в Российской Федерации» №273-ФЗ от 29.12.2012г., Профессионального стандарта педагога (приказ Министерства труда и социальной защиты №544н от 18.10.2013г.), Постановления главного государственного санитарного врача РФ № 189 от 29.12.2010г., Основной образовательной программы образовательного учреждения и требований к результатам освоения основной общеобразовательной программы основного общего образования, представленных в Примерной программе основного общего образования по физике, Фундаментального ядра содержания общего образования и Требований к результатам основного общего образования, представленных в федеральном государственном образовательном стандарте общего образования второго поколения. При разработке программы ставилась задача формирования у учащихся представлений о явлениях и законах окружающего мира, с которыми они непосредственно сталкиваются в повседневной жизни. Этими же соображениями определяется уровень усвоения учебного материала, степень овладения учащимися умениями и навыками. Предполагается, что материал учащиеся должны усваивать на уровне понимания наиболее важных проявлений физических законов окружающем мире, их использования в практической деятельности. Данный курс направлен на развитие способностей учащихся к исследованию, на формирование умений проводить наблюдения, выполнять экспериментальные задания. Важной особенностью курса является изучение количественных закономерностей только в тех объемах, без которых невозможно постичь суть явления или смысл закона. Предполагается, что внимание учащихся сосредоточится на качественном рассмотрении физических процессов, на их проявлении в природе и использовании в технике. Знание физических законов необходимо для изучения химии, биологии, физической географии, технологии, ОБЖ.

Цели и задачи изучения учебного предмета

Изучение физики направлено на достижение следующих целей:


  • освоение знаний о строении вещества, механических и молекулярных явлений; величинах характеризующих эти явления; законах, которым они подчиняются; методах научного познания природы и формирование на этой основе представлений о физической картине мира;

  • развитие познавательных интересов, интеллектуальных и творческих способностей, самостоятельности в приобретении новых знаний, при решении физических задач и выполнении экспериментальных исследований с использованием информационных технологий;

  • воспитание убежденности в возможности познания законов природы, в необходимости разумного использования достижений науки и технологий для дальнейшего развития человеческого общества, уважения к творцам науки и техники; отношения к физике как к элементу общечеловеческой культуры.

Основные задачи данной рабочей программы:


  • сформировать умения проводить наблюдения природных явлений, использовать простые измерительные приборы для изучения физических явлений; применять полученные знания для объяснения разнообразных природных явлений и процессов, принципов действия важнейших технических устройств, для решения физических задач.

  • научить использовать полученные знания и умения для решения практических задач повседневной жизни, обеспечения безопасности своей жизни, рационального природопользования и охраны окружающей среды.

В процессе реализации рабочей программы решаются не только задачи общего физического образования, но и дополнительные направленные на:

  • развитие интеллекта;

  • использование личностных особенностей учащихся в процессе обучения;

  • формирование у учащихся физического образа окружающего мира.

  • формирование здоровьесберегающих знаний и способов оказания первой медицинской (доврачебной) помощи.

Основными целями изучения курса физики в 8 классе являются:

· освоение знаний о тепловых, электрических, магнитных и световых явлениях, электромагнитных волнах; величинах, характеризующих эти явления; законах, которым они подчиняются; методах научного познания природы и формирование на этой основе представлений о физической картине мира;

· овладение умениями проводить наблюдения природных явлений, описывать и обобщать результаты наблюдений, использовать простые измерительные приборы для изучения физических явлений; представлять результаты наблюдений или измерений с помощью таблиц, графиков и выявлять на этой основе эмпирические зависимости; применять полученные знания для объяснения разнообразных природных явлений и процессов, принципов действия важнейших технических устройств, для решения физических задач;

· развитие познавательных интересов, интеллектуальных и творческих способностей, самостоятельности в приобретении новых знаний при решении физических задач и выполнении экспериментальных исследований с использованием информационных технологий;

· воспитание убежденности в возможности познания природы, в необходимости разумного использования достижений науки и технологий для дальнейшего развития человеческого общества, уважения к творцам науки и техники; отношения к физике как к элементу общечеловеческой культуры;

· применение полученных знаний и умений для решения практических задач повседневной жизни, для обеспечения безопасности своей жизни, рационального природопользования и охраны окружающей среды.

Основными задачами изучения курса физики в 8 классе являются:

- развитие мышления учащихся, формирование умений самостоятельно приобретать и применять знания, наблюдать и объяснять физические явления;

- овладение школьниками знаниями о широких возможностях применения физических законов в практической деятельности человека с целью решения экологических проблем.

Общая характеристика предмета


Школьный курс физики - системообразующий для естественно-научных учебных предметов, поскольку физические законы лежат в основе содержания курсов химии, биологии, географии и астрономии.

Программа по физике определяет цели изучения физики в основной школе, содержание тем курса, дает распределение учебных часов по разделам курса, перечень рекомендуемых демонстрационных экспериментов учителя, опытов и лабораторных работ, выполняемых учащимися, а также планируемые результаты обучения физике.

Цели изучения физики в основной школе следующие:

  • развитие интересов и способностей учащихся на основе передачи им знаний и опыта познавательной и творческой деятельности;

  • понимание учащимися смысла основных научных понятий и законов физики, взаимосвязи между ними;

  • формирование у учащихся представлений о физической картине мира.

Достижение этих целей обеспечивается решением следующих задач:

  • знакомство учащихся с методом научного познания и методами исследования объектов и явлений природы;

  • приобретение учащимися знаний о механических, тепловых, электромагнитных и квантовых явлениях, физических величинах, характеризующих эти явления;

  • формирование у учащихся умений наблюдать природные явления и выполнять опыты, лабораторные работы и экспериментальные исследования с использованием

измерительных приборов, широко применяемых в практической жизни;

  • овладение учащимися такими общенаучными понятия ми, как природное явление, эмпирически установленный факт, проблема, гипотеза, теоретический вывод, результат экспериментальной проверки;

  • понимание учащимися отличий научных данных от не проверенной информации, ценности науки для удовлетворения бытовых, производственных и культурных потребностей человека.




Место учебного предмета в образовании

Согласно учебному плану рабочая программа рассчитана на 68 часов в год, 2 часа в неделю (базовый уровень обучения).

Основная форма организации образовательного процесса - классно-урочная система.

Особенно важное значение в преподавании физики имеет школьный физический эксперимент, в который входят демонстрационный эксперимент и самостоятельные лабораторные работы учащихся. Эти методы соответствуют особенностям физической науки.

Программа предусматривает проведение следующих типов уроков:

I. Урок изучения нового материала

II. Урок совершенствования знаний, умений и навыков

III. Урок обобщения и систематизации знаний

IV. Урок контроля

V. Комбинированный урок

Предусматривается применение следующих технологий обучения:

  1. традиционная классно-урочная

  2. игровые технологии

  3. элементы проблемного обучения

  4. технологии уровневой дифференциации

  5. здоровьесберегающие технологии

  6. ИКТ

Виды и формы контроля: промежуточный, предупредительный контроль; контрольные работы.



Учебно-тематический план

№№ н/п

Наименование разделов

Всего часов

Из них

Лабораторные работы

Контрольные работы

1

Тепловые явления

26

3

2

1.Сравнение количеств теплоты при смешении воды разной температуры.

2.Определение удельной теплоемкости вещества.

3.Измерение влажности воздуха

1. Контрольная работа по теме «Тепловые явления»

2. Контрольная работа по теме «Изменение агрегатных состояний вещества»

2

Электрические явления


25

5

2

4. Сборка электрической цепи и измерение силы тока и напряжения.

5. Измерение напряжения на различных участках электрической цепи

6. Регулирование силы тока реостатом

7. Определение сопротивления проводника при помощи амперметра и вольтметра.

8.Измерение мощности и работы тока в электрической лампе.

3. Контрольная работа по теме «Электрический ток. Соединение проводников»

4. Контрольная работа по теме «Работа и мощность электрического тока»

3

Электромагнитные явления


6

2

1

9. Сборка электромагнита и испытание его действия

10.Изучение электрического двигателя постоянного тока

5. Контрольная работа по теме «Электромагнитные явления»

4

Световые явления


10

1

1

11. Получение изображения при помощи линзы.

6. Контрольная работа по теме «Световые явления»

5

Обобщающее повторение

1

Итого

68

11

6













Личностные, метапредметные и предметные результаты освоения образовательной программы


Личностными результатами обучения физике являются:

•сформированность познавательных интересов, интеллектуальных и творческих способностей учащихся;

•убежденность в возможности познания природы, в необходимости разумного использования достижений науки и технологий для дальнейшего развития человеческого общества, уважение к творцам науки и техники, отношение к физике как элементу общечеловеческой культуры;

•самостоятельность в приобретении новых знаний и практических умений;

•готовность к выбору жизненного пути в соответствии с собственными интересами и возможностями;

•мотивация образовательной деятельности школьников на основе личностно ориентированного подхода;

•формирование ценностных отношений друг к другу, учителю, авторам открытий и изобретений, результатам обучения.

Метапредметными результатами обучения физике в основной школе являются:

•овладение навыками самостоятельного приобретения новых знаний, организации учебной деятельности, постановки целей, планирования, самоконтроля и оценки результатов своей деятельности, умениями предвидеть возможные результаты своих действий;

•понимание различий между исходными фактами и гипотезами для их объяснения, теоретическими моделями и реальными объектами, овладение универсальными учебными действиями на примерах гипотез для объяснения известных фактов и экспериментальной проверки выдвигаемых гипотез, разработки теоретических моделей процессов или явлений;

•формирование умений воспринимать, перерабатывать и предъявлять информацию в словесной, образной, символической формах, анализировать и перерабатывать полученную информацию в соответствии с поставленными задачами, выделять основное содержание прочитанного текста, находить в нем ответы на поставленные вопросы и излагать его;

•приобретение опыта самостоятельного поиска, анализа и отбора информации с использованием различных источников и новых информационных технологий для решения познавательных задач;

•развитие монологической и диалогической речи, умения выражать свои мысли и способности выслушивать собеседника, понимать его точку зрения, признавать право другого человека на иное мнение;

•освоение приемов действий в нестандартных ситуациях, овладение эвристическими методами решения проблем;

•формирование умений работать в группе с выполнением различных социальных ролей, представлять и отстаивать свои взгляды и убеждения, вести дискуссию.

Общими предметными результатами обучения физике в основной школе являются:

•знания о природе важнейших физических явлений окружающего мира и понимание смысла физических законов, раскрывающих связь изученных явлений;

•умения пользоваться методами научного исследования явлений природы, проводить наблюдения, планировать и выполнять эксперименты, обрабатывать результаты измерений, представлять результаты измерений с помощью таблиц, графиков и формул, обнаруживать зависимости между физическими величинами, объяснять полученные результаты и делать выводы, оценивать границы погрешностей результатов измерений;

•умения применять теоретические знания по физике на практике, решать физические задачи на применение полученных знаний;

•умения и навыки применять полученные знания для объяснения принципов действия важнейших технических устройств, решения практических задач повседневной жизни, обеспечения безопасности своей жизни, рационального природопользования и охраны окружающей среды;

•формирование убеждения в закономерной связи и познаваемости явлений природы, в объективности научного знания, в высокой ценности науки в развитии материальной и духовной культуры людей;

•развитие теоретического мышления на основе формирования умений устанавливать факты, различать причины и следствия, строить модели и выдвигать гипотезы, отыскивать и формулировать доказательства выдвинутых гипотез, выводить из экспериментальных фактов и теоретических моделей физические законы;

•коммуникативные умения докладывать о результатах своего исследования, участвовать в дискуссии, кратко и точно отвечать на вопросы, использовать справочную литературу и другие источники информации.

Частными предметными результатами обучения физике в основной школе, на которых основываются общие результаты, являются:

•понимание и способность объяснять такие физические явления, как процессы испарения и плавления вещества, охлаждение жидкости при испарении, изменение внутренней энергии тела в результате теплопередачи или работы внешних сил,

электризация тел, нагревание проводников электрическим током,

отражение и преломление света

•умения измерять температуру, количество теплоты, удельную теплоемкость вещества, удельную теплоту плавления вещества, влажность воздуха, силу электрического тока, электрическое напряжение, электрический заряд, электрическое сопротивление, фокусное расстояние собирающей линзы, оптическую силу линзы;

•владение экспериментальными методами исследования в процессе самостоятельного изучения

силы тока на участке цепи от электрического напряжения, электрического сопротивления проводника от его длины, площади поперечного сечения и материала,

угла отражения от угла падения света;

•понимание смысла основных физических законов и умение применять их на практике:

закон сохранения энергии, закон сохранения электрического заряда, закон Ома для участка цепи, закон Джоуля-Ленца;

•понимание принципов действия машин, приборов и технических устройств, с которыми каждый человек постоянно встречается в повседневной жизни, и способов обеспечения безопасности при их использовании;

•овладение разнообразными способами выполнения расчетов для нахождения неизвестной величины в соответствии с условиями поставленной задачи на основании использования законов физики;

•умение использовать полученные знания, умения и навыки в повседневной жизни (быт, экология, охрана здоровья, охрана окружающей среды, техника безопасности и др.).

Содержание программы учебного предмета (68 часов)

Тепловые явления (15 часов)

Тепловое движение. Термометр. Связь температуры со средней скоростью движения его молекул. Внутренняя энергия. Два способа изменения внутренней энергии: теплопередача и работа. Виды теплопередачи. Количество теплоты. Удельная теплоемкость вещества. Удельная теплота сгорания топлива. Закон сохранения энергии в механических и тепловых процессах.

Демонстрации.

Изменение энергии тела при совершении работы. Конвекция в жидкости. Теплопередача путем излучения. Сравнение удельных теплоемкостей различных веществ.

Лабораторные работы.

№1. Сравнение количеств теплоты при смешивании воды разной температуры.

№2. Измерение удельной теплоемкости твердого тела.

Изменение агрегатных состояний вещества (11 часов)

Агрегатные состояния вещества. Плавление и отвердевание тел. Температура плавления. Удельная теплота плавления. Испарение и конденсация. Насыщенный пар. Относительная влажность воздуха и ее измерение. Психрометр. Кипение. Зависимость температуры кипения от давления. Удельная теплота парообразования. Объяснение изменения агрегатных состояний на основе молекулярно-кинетических представлений. Преобразования энергии в тепловых двигателях. Двигатель внутреннего сгорания. Паровая турбина. Холодильник. КПД теплового двигателя. Экологические проблемы использования тепловых машин.

Демонстрации.

Явление испарения. Кипение воды. Зависимость температуры кипения от давления. Плавление и кристаллизация веществ. Измерение влажности воздуха психрометром. Устройство четырехтактного двигателя внутреннего сгорания. Устройство паровой турбины.

Лабораторная работа.

№3. Измерение относительной влажности воздуха.

Электрические явления (25 часов)

Электризация тел. Два рода электрических зарядов. Проводники, непроводники (диэлектрики) и полупроводники. Взаимодействие заряженных тел. Электрическое поле. Закон сохранения электрического заряда. Делимость электрического заряда. Электрон. Строение атомов.

Электрический ток. Гальванические элементы и аккумуляторы. Действия электрического тока. Направление электрического тока. Электрическая цепь. Электрический ток в металлах. Носители электрического тока в полупроводниках, газах и электролитах. Полупроводниковые приборы. Сила тока. Амперметр. Электрическое напряжение. Вольтметр. Электрическое сопротивление. Закон Ома для участка электрической цепи. Удельное электрическое сопротивление. Реостаты. Последовательное и параллельное соединения проводников.

Работа и мощность тока. Количество теплоты, выделяемое проводником с током. Лампа накаливания. Электрические нагревательные приборы. Электрический счетчик. Расчет электроэнергии, потребляемой электроприбором. Короткое замыкание. Плавкие предохранители.

Демонстрации.

Электризация тел. Два рода электрических зарядов. Устройство и действие электроскопа. Проводники и изоляторы. Электризация через влияние. Перенос электрического заряда с одного тела на другое. Источники постоянного тока. Составление электрической цепи.

Лабораторные работы.

№4. Сборка электрической цепи и измерение силы тока в ее различных участках.

№5. Измерение напряжения на различных участках электрической цепи.

№6. Регулирование силы тока реостатом.

№7. Исследование зависимости силы тока в проводнике от напряжения на его концах при постоянном сопротивлении. Измерение сопротивления.

№8. Измерение работы и мощности электрического тока в лампе.

Электромагнитные явления (6 часов)

Магнитное поле тока. Электромагниты и их применение. Постоянные магниты. Магнитное поле Земли. Магнитные бури. Действие магнитного поля на проводник с током. Электродвигатель. Динамик и микрофон.

Демонстрации.

Опыт Эрстеда. Принцип действия микрофона и громкоговорителя.

Лабораторные работы.

№9. Сборка электромагнита и испытание его действия.

№10. Изучение электрического двигателя постоянного тока (на модели).

Световые явления (10 часов)

Источники света. Прямолинейное распространение света в однородной среде. Отражение света. Закон отражения. Плоское зеркало. Преломление света. Линза. Фокусное расстояние и оптическая сила линзы. Построение изображений в линзах. Глаз как оптическая система. Дефекты зрения. Оптические приборы.

Демонстрации.

Источники света. Прямолинейное распространение света. Закон отражения света. Изображение в плоском зеркале. Преломление света. Ход лучей в собирающей и рассеивающей линзах. Получение изображений с помощью линз. Принцип действия проекционного аппарата. Модель глаза.

Лабораторные работы.

№11. Измерение фокусного расстояния собирающей линзы. Получение изображений.

Итоговое повторение (резервное время) (1 часа)


Распределение часов по темам полностью соответствует авторской программе.
































Учебно-методический комплекс и учебно-методическое обеспечение


№п\п

Авторы,составители

Название учебного издания

Годы издания

Издательство

1.

А.В. Перышкин

Физика-8кл

2014

Москва, Дрофа

2.

В.И. Лукашик

Сборник задач по физике7-9кл.

2012

Москва, Просвещение

3.

Чеботарева А.В.

Тесты по физике 8 класс

2012

Москва, Экзамен

4.

Волков В.А.

Поурочные разработки по физике 8 класс

2014

Москва, Дрофа

5.

Годова И.В.

Контрольные работы в новом формате 8 класс

2011

Москва, Интеллект-Центр


Данный учебно-методический комплекс реализует задачу концентрического принципа построения учебного материала, который отражает идею формирования целостного представления о физической картине мира

Цифровые Образовательные Ресурсы

№1 Виртуальная школа Кирилла и Мефодия «Уроки физики»

№2 «Физика, 7-11 класс ООО Физикон»

№3 Библиотека наглядных пособий 1С: Образование «Физика, 7-11 класс»

№4 Библиотека электронных наглядных пособий «Астрономия 10-11 классы» ООО Физикон


Для реализации учебного процесса необходимы технические средства

компьютер, мультимедийный проектор, проекционный экран.

Демонстрационное оборудование

Тепловые явления. Изменение агрегатных состояний вещества

1. Набор приборов для демонстрации видов теплопередачи

2. Модели кристаллических решеток

3. Модели ДВС, паровой турбины

4. Калориметр, набор тел для калориметрических работ.

5. Психрометр, термометр, гигромерт

Электрические явления. Электромагнитные явления

1. Набор приборов для демонстраций по электростатике.

2. Набор для изучения законов постоянного тока

3. Набор приборов для изучения магнитных полей

4. Электрический звонок

5. Электромагнит разборный

Световые явления

1. Набор по геометрической оптике


Оборудование к лабораторным работам

Лабораторная работа №1

«Сравнение количеств теплоты при смешивании воды разной температуры».

Оборудование: калориметр, измерительный цилиндр, термометр, стакан

Лабораторная работа №2

«Измерение удельной теплоемкости твердого тела».

Оборудование: стакан с водой, калориметр, термометр, весы, гири, металлический цилиндр на нити, сосуд с горячей водой.

Лабораторная работа №3

«Измерение относительной влажности воздуха».

Оборудование: 2 термометра, кусок марли, стакан с водой.

Лабораторная работа №4

«Сборка электрической цепи и измерение силы тока в ее различных участках».

Оборудование: источник питания, низковольтная лампа на подставке, ключ, амперметр, соединительные провода.

Лабораторная работа №5

«Измерение напряжения на различных участках электрической цепи».

Оборудование: источник питания, резисторы, низковольтная лампа на подставке, вольтметр, ключ, соединительные провода.

Лабораторная работа №6

«Регулирование силы тока реостатом».

Оборудование: источник питания, ползунковый реостат, амперметр, ключ, соединительные провода.

Лабораторная работа №7

«Исследование зависимости силы тока в проводнике от напряжения на его концах при постоянном сопротивлении. Измерение сопротивления».

Оборудование: источник питания, исследуемый проводник, амперметр, вольтметр, реостат, ключ, соединительные провода.

Лабораторная работа №8

«Измерение работы и мощности электрического тока в лампе».

Оборудование: источник питания, амперметр, вольтметр, ключ, соединительные провода,

низковольтная лампа на подставке. Секундомер.

Лабораторная работа №9

«Сборка электромагнита и испытание его действия».

Оборудование: источник питания, ключ, соединительные провода, ползунковый реостат, компас, детали для сборки электромагнита.

Лабораторная работа №10

«Изучение электрического двигателя постоянного тока (на модели)».

Оборудование: модель электродвигателя, источник питания, ключ, соединительные провода. Лабораторная работа №11

«Измерение фокусного расстояния собирающей линзы. Получение изображений».

Оборудование: собирающая линза, экран, лампа с колпачком, в котором сделана прорезь, измерительная лента.



Контрольно-измерительные материалы

Вводная контрольная работа

Вариант №1

1. Вода испарилась и превратилась в пар. Как при этом изменилось движение и расположение молекул? Изменились ли при этом сами молекулы?

2. Борзая развивает скорость до 16 м/с. Какой путь она может преодолеть за 5 минут?

3. Толщина льда на реке такова, что он выдерживает давление 40 кПа. Пройдет ли по льду трактор массой 5,4 т, если он опирается на гусеницы общей площадью 1,5 м2?

Вариант №2

1. Почему аромат духов чувствуется на расстоянии?

2. С какой скоростью движется кит, если для прохождения 3 км ему потребовалось 3 мин 20 с.

3. На какой глубине давление воды в море равно 2060 кПа? Плотность морской воды 1030 кг/м3

Контрольная работа №1 «Тепловые явления»

Вариант №1

1. Стальная деталь массой 500 г при обработке нагрелась на 20 градусов. Чему равно изменение внутренней энергии детали?

2. Какую массу пороха нужно сжечь, чтобы при полном его сгорании выделилось 38 000 кДж энергии?

3. Оловянный и латунный шары одинаковой массы, взятые при температуре 20 градусов, опустили в горячую воду. Одинаковое ли количество теплоты получат шары от воды при нагревании?

4. На сколько градусов изменится температура воды массой 20 кг, если ей передать всю энергию, выделившуюся при сгорании бензина 20 г?

Вариант №2

1. Определите массу серебряной ложки, если для изменения её температуры от 20 до 40 градусов требуется 250 Дж энергии.

2. Какое количество теплоты выделится при полном сгорании торфа массой 200 г?

3. Стальную и свинцовую гири массой по 1 кг прогрели в кипящей воде, а затем поставили на лед. Под какой из гирь растает больше льда?

4. Какую массу керосина нужно сжечь, чтобы получилось столько же энергии, сколько её

выделяется при полном сгорании каменного угля массой 500 г?


Контрольная работа №2 «Изменение агрегатных состояний вещества»

Вариант 1

1. Какое количество теплоты необходимо для плавления медной заготовки массой 100г, взятой при температуре 1075ºC?

2. При кипении воды было затрачено 690 кДж энергии. Найдите массу испарившейся воды.

3. На рисунке приведен график изменения температуры воды в зависимости от времени нагревания. Каким процессам соответствуют участки графика АВ, ВС и СД?

4. Два цилиндра одинаковой массы: один из чугуна, другой - из меди, нагрели до одинаковой температуры и поставили на лёд. Под каким цилиндром расплавится больше льда? Ответ поясните.

Вариант 2

1. Какое количество теплоты необходимо для превращения в пар воды массой 200г, взятой при температуре 50ºC?

2. Определите массу медного бруска, если для его плавления необходимо 42 кДж энергии.

3. На рисунке приведен график изменения температуры алюминия в зависимости от времени нагревания. Каким процессам соответствуют участки графика АВ, ВС и СД?

4. Медный и свинцовый кубики одинаковой массы опустили в кипяток , а затем вынули из него и поместили на слой парафина. Под каким кубиком расплавится больше парафина? Ответ поясните.


Контрольная работа №3 «Электрические явления»

Вариант №1

1. Сила тока в спирали электрического кипятильника 4 А. Определите сопротивление спирали, если напряжение на клеммах кипятильника 220 В.

2. Резисторы, сопротивления которых 30 Ом и 50 Ом, соединены последовательно и подключены к батарейке. Напряжение на первом резисторе 3 В. Найдите напряжение на втором резисторе?

3. Каким сопротивлением обладает лампа мощностью 40 Вт, работающая под напряжением 220 В?

4. Определите напряжение на концах проводника, удельное сопротивление которого 0,4 Ом*мм2/м, если его длина 6 м, площадь поперечного сечения 0,08 мм2, а сила тока в нем 0,6 А.

5. Начертите схему цепи, состоящую из последовательно соединенных источников тока, лампы накаливания, двух резисторов и ключа. Как включить в эту цепь вольтметр, чтоб измерить напряжение на лампе?

Вариант №2

1. Определите, какое нужно приложить напряжение к проводнику сопротивлением 0,25 Ом, чтобы в проводнике была сила тока 30 А.

2. Электрическая плитка сопротивлением 40 Ом и лампа накаливания сопротивлением 400 Ом соединены последовательно и включены в цепь с напряжением 220 В. Определите силу тока в цепи.

3. Сила тока в спирали электрокипятильника мощностью 600 Вт - 5 А. Определите сопротивление спирали.

4. Определите силу тока силу тока в проводнике длиной 125 м и площадью поперечного сечения 10 мм2, если напряжение на зажимах 80 В, а удельное сопротивление материала, из которого изготовлен проводник, составляет 0,4 Ом*мм2/м.

5. Начертите схему электрической цепи, состоящей из источника тока, ключа, электрической лампы и двух параллельно соединенных резисторов. Как включить амперметр, чтобы измерить силу тока в цепи?







Планируемые результаты изучения предмета


Выпускник научится:


  • Распознавать смысл понятий: физическое явление, физический закон, взаимодействие, электрическое поле, магнитное поле, атом.

  • Объяснять смысл физических величин: внутренняя энергия, температура, количество теплоты, удельная теплоемкость, влажность воздуха, электрический заряд, сила электрического тока, электрическое напряжение, электрическое сопротивление, работа и мощность электрического тока, фокусное расстояние линзы.

  • Представлять смысл физических законов: сохранения энергии в тепловых процессах, сохранения электрического заряда, Ома для участка цепи, Джоуля - Ленца, прямолинейного распространения света, отражения и преломления света.

Выпускник получит возможность научиться:

Описывать и объяснять физические явления: теплопроводность, конвекцию, излучение, испарение, конденсацию, кипение, плавление. Кристаллизацию, электризацию, взаимодействие эле ктрических зарядов,, взаимодействие магнитов, действие магнитного поля на проводник с током, тепловое действие тока, отражение, преломление света

Использовать физические приборы и измерительные инструменты для измерения физических величин: температуры, влажности воздуха, силы тока , напряжения, сопротивления, работы и мощности электрического тока.

Представлять результаты измерений с помощью графиков и выявлять на этой основе эмпирические зависимости: температуры остывающего тела от времени, силы тока от напряжения на участке цепи, угла отражения от угла падения, угла преломления от угла падения.

Выражать результаты измерений и расчетов в единицах СИ

Приводить примеры практического использования физических знаний о тепловых, электромагнитных явлениях

Осуществлять самостоятельный поиск информации естественнонаучного содержания с использованием различных источников и ее обработку и представление в разных формах (словесно, графически, схематично….)

Использовать приобретенные знания и умения в повседневной жизни для обеспечения безопасности в процессе использования транспортных средств, электробытовых приборов, электронной техники, контроля за исправностью электропроводки.







Планируемые результаты изучения предмета

Тепловые явления

Выпускник научится:

• распознавать тепловые явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: диффузию, изменение объема тел при нагревании (охлаждении), большую сжимаемость газов, малую сжимаемость жидкостей и твердых тел; тепловое равновесие, испарение, конденсация, плавление, кристаллизация, кипение, влажность воздуха, различные способы теплопередачи;

• описывать изученные свойства тел и тепловые явления, используя физические величины: количество теплоты, внутренняя энергия, температура, удельная теплоемкость вещества, удельная теплота плавления и парообразования, удельная теплота сгорания топлива, коэффициент полезного действия теплового двигателя; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения, находить формулы, связывающие данную физическую величину с другими величинами;

• анализировать свойства тел, тепловые явления и процессы, используя закон сохранения энергии; различать словесную формулировку закона и его математическое выражение;

• различать основные признаки моделей строения газов, жидкостей и твердых тел;

• решать задачи, используя закон сохранения энергии в тепловых процессах, формулы, связывающие физические величины (количество теплоты, внутренняя энергия, температура, удельная теплоемкость вещества, удельная теплота плавления и парообразования, удельная теплота сгорания топлива, коэффициент полезного действия теплового двигателя): на основе анализа условия задачи выделять физические величины и формулы, необходимые для ее решения, и проводить расчеты.

Выпускник получит возможность научиться:

• использовать знания о тепловых явлениях в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде; приводить примеры экологических последствий работы двигателей внутреннего сгорания (ДВС), тепловых и гидроэлектростанций;

• приводить примеры практического использования физических знаний о тепловых явлениях;

• различать границы применимости физических законов, понимать всеобщий характер фундаментальных физических законов (закон сохранения энергии в тепловых процессах) и ограниченность использования частных законов;

• приемам поиска и формулировки доказательств выдвинутых гипотез и теоретических выводов на основе эмпирически установленных фактов;

• находить адекватную предложенной задаче физическую модель, разрешать проблему на основе имеющихся знаний о тепловых явлениях с использованием математического аппарата, и оценивать реальность полученного значения физической величины.

Электрические и магнитные явления

Выпускник научится:

• распознавать электромагнитные явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: электризацию тел, взаимодействие зарядов, нагревание проводника с током, взаимодействие магнитов, электромагнитную индукцию, действие магнитного поля на проводник с током, прямолинейное распространение света, отражение и преломление света, дисперсию света;

• описывать изученные свойства тел и электромагнитные явления, используя физические величины: электрический заряд, силу тока, электрическое напряжение, электрическое сопротивление, удельное сопротивление вещества, работу тока, мощность тока, фокусное расстояние и оптическую силу линзы; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения; указывать формулы, связывающие данную физическую величину с другими величинами;

• анализировать свойства тел, электромагнитные явления и процессы; используя физические законы: закон сохранения электрического заряда, закон Ома для участка цепи, закон Джоуля - Ленца, закон прямолинейного распространения света, закон отражения света, закон преломления света; при этом различать словесную формулировку закона и его математическое выражение;

• решать задачи, используя физические законы (закон Ома для участка цепи, закон Джоуля - Ленца, закон прямолинейного распространения света, закон отражения света, закон преломления света) и формулы, связывающие физические величины (сила тока, электрическое напряжение, электрическое сопротивление, удельное сопротивление вещества, работа тока, мощность тока, фокусное расстояние и оптическая сила линзы, формулы расчета электрического сопротивления при последовательном и параллельном соединении проводников);

на основе анализа условия задачи выделять физические величины и формулы, необходимые для ее решения, и проводить расчеты.

Выпускник получит возможность научиться:

• использовать знания об электромагнитных явлениях в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде;

• приводить примеры практического использования физических знаний о электромагнитных явлениях;

• различать границы применимости физических законов, понимать всеобщий характер фундаментальных законов (закон сохранения электрического заряда) и ограниченность использования частных законов (закон Ома для участка цепи, закон Джоуля - Ленца и др.);

• приемам построения физических моделей, поиска и формулировки доказательств выдвинутых гипотез и теоретических выводов на основе эмпирически установленных фактов;

• находить адекватную предложенной задаче физическую модель, разрешать проблему на основе имеющихся знаний об электромагнитных явлениях с использованием математического аппарата, и оценивать реальность полученного значения физической величины.


© 2010-2022