Рабочая программа по физике с учетом ФГОС. 7-9 классы

Раздел Физика
Класс 9 класс
Тип Рабочие программы
Автор
Дата
Формат doc
Изображения Есть
For-Teacher.ru - все для учителя
Поделитесь с коллегами:

Рабочая программа по физике с учетом ФГОС. 7-9 классы

1. Пояснительная записка

Рабочая программа по физике для 7-9 классов разработана в соответствии:

- с Федеральным законом от 29 декабря 2012 года № 273-ФЗ «Об образовании в Российской Федерации»;

- с требованиями федерального государственного образовательного стандарта основного общего образования (Федеральный государственный образовательный стандарт основного общего образования. Приказ Министерства образования и науки Российской Федерации от17 декабря 2010г. №1897 « Об утверждении ФГОС ООО» (с изменениями, внесенным приказом Министерства образования и науки Российской Федерации от 29 декабря 2014г. №1644);

- с учетом авторской программы основного общего образования «Физика. 7 - 9 классы» авторов УМК А.В. Перышкина, Н.Ф. Филонович, Е.М. Гутник (М.: Дрофа, 2015),

рабочая программа реализуется в учебниках А. В. Перышкина «Физика» для 7, 8 классов и А. В. Перышкина, Е. М. Гутник «Физика» для 9 класса линии «Вертикаль».


Цели и задачи:

Цели, на достижение которых направлено изучение физики в школе, определены исходя из целей общего образования, сформулированных в Федеральном государственном стандарте общего образования и конкретизированы в основной образовательной программе основного общего образования Школы:

  • повышение качества образования в соответствии с требованиями социально-экономического и информационного развития общества и основными направлениями развития образования на современном этапе.

  • создание комплекса условий для становления и развития личности выпускника в её индивидуальности, самобытности, уникальности, неповторимости в соответствии с требованиями российского общества

  • обеспечение планируемых результатов по достижению выпускником целевых установок, знаний, умений, навыков, компетенций и компетентностей, определяемых личностными, семейными, общественными, государственными потребностями и возможностями обучающегося среднего школьного возраста, индивидуальными особенностями его развития и состояния здоровья;

  • Усвоение учащимися смысла основных понятий и законов физики, взаимосвязи между ними;

  • Формирование системы научных знаний о природе, ее фундаментальных законах для построения представления о физической картине мира;

  • Формирование убежденности в познаваемости окружающего мира и достоверности научных методов его изучения;

  • Развитие познавательных интересов и творческих способностей учащихся и приобретение опыта применения научных методов познания, наблюдения физических явлений, проведения опытов, простых экспериментальных исследований, прямых и косвенных измерений с использованием аналоговых и цифровых измерительных приборов; оценка погрешностей любых измерений;

  • Систематизация знаний о многообразии объектов и явлений природы, о закономерностях процессов и о законах физики для осознания возможности разумного использования достижений науки в дальнейшем развитии цивилизации;

  • формирование готовности современного выпускника основной школы к активной учебной деятельности в информационно-образовательной среде общества, использованию методов познания в практической деятельности, к расширению и углублению физических знаний и выбора физики как профильного предмета для продолжения образования;

  • Организация экологического мышления и ценностного отношения к природе, осознание необходимости применения достижений физики и технологий для рационального природопользования;

  • понимание физических основ и принципов действия (работы) машин и механизмов, средств передвижения и связи, бытовых приборов, промышленных технологических процессов, влияния их на окружающую среду; осознание возможных причин техногенных и экологических катастроф;

  • формирование представлений о нерациональном использовании природных ресурсов и энергии, загрязнении окружающей среды как следствие несовершенства машин и механизмов;

  • овладение основами безопасного использования естественных и искусственных электрических и магнитных полей, электромагнитных и звуковых волн, естественных и искусственных ионизирующих излучений во избежание их вредного воздействия на окружающую среду и организм человека

  • развитие умения планировать в повседневной жизни свои действия с применением полученных знаний законов механики, электродинамики, термодинамики и тепловых явлений с целью сбережения здоровья.


  • Достижение целей рабочей программы по физике обеспечивается решением следующих задач:

  • обеспечение эффективного сочетания урочных и внеурочных форм организации образовательного процесса, взаимодействия всех его участников;

  • организация интеллектуальных и творческих соревнований, проектной и учебно-исследовательской деятельности;

  • сохранение и укрепление физического, психологического и социального здоровья обучающихся, обеспечение их безопасности;

  • формирование позитивной мотивации обучающихся к учебной деятельно­сти;

  • обеспечение условий, учитывающих индивидуально-личностные особенно­сти обучающихся;

  • совершенствование взаимодействия учебных дисциплин на основе интеграции;

  • внедрение в учебно-воспитательный процесс современных образовательных технологий, формирующих ключевые компетенции;

  • развитие дифференциации обучения;

  • знакомство обучающихся с методом научного познания и методами исследования объектов и явлений природы;

  • приобретение обучающимися знаний о механических, тепловых, электромагнитных и квантовых явлениях, физических величинах, характеризующих эти явления;

  • формирование у обучающихся умений наблюдать природные явления и выполнять опыты, лабораторные работы и экспериментальные исследования с использованием измерительных приборов, широко применяемых в практической жизни;

  • овладение обучающимися общенаучными понятиями: природное явление, эмпирически установленный факт, проблема, гипотеза, теоретический вывод, результат экспериментальной проверки;

  • понимание обучающимися отличий научных данных от непроверенной информации, ценности науки для удовлетворения бытовых, производственных и культурных потребностей человека.

  • Принципы и подходы к формированию программы:

  • Стандарт второго поколения (ФГОС) в сравнении со стандартом первого поколения предполагает деятельностный подход к обучению, где главная цель: развитие личности учащегося. Система образования отказывается от традиционного представления результатов обучения в виде знаний, умений и навыков. Формулировки стандарта указывают реальные виды деятельности, которыми следует овладеть к концу обучения, т. е. обучающиеся должны уметь учиться, самостоятельно добывать знания, анализировать, отбирать нужную информацию, уметь контактировать в различных по возрастному составу группах. Оптимальное сочетание теории, необходимой для успешного решения практических задач- главная идея УМК по физике системы учебников «Вертикаль» ( А. В. Перышкина «Физика» для 7, 8 классов и А. В. Перышкина, Е. М. Гутник «Физика» для 9 класса), которая включает в себя и цифровые образовательные ресурсы (ЦОР) для системы Windows.

  • Концептуальные положения:

  • Современные научные представления о целостной научной картине мира, основных понятиях физики и методах сопоставления экспериментальных и теоретических знаний с практическими задачами отражены в содержательном материале учебников. Изложение теории и практики опирается:

  • на понимание возрастающей роли естественных наук и научных исследований в современном мире;

  • на овладение умениями формулировать гипотезы, конструировать, проводить эксперименты, оценивать полученные результаты;

  • воспитание ответственного и бережного отношения к окружающей среде;

  • формирование умений безопасного и эффективного использования лабораторного оборудования, проведения точных измерений и адекватной оценки полученных результатов, представления научно обоснованных аргументов своих действий, основанных на межпредметном анализе учебных задач.

  • Состав участников образовательного процесса:

  • Программа имеет базовый уровень, рассчитана на учащихся 7-9 классов общеобразовательной школы.



2. Общая характеристика учебного предмета

Школьный курс физики - системообразующий для естественно-научных предметов, поскольку физические законы, лежащие в основе мироздания, являются основой содержания курсов химии, биологии, географии и астрономии. Физика вооружает школьников научным методом познания, позволяющим получать объективные знания об окружающем мире.

В 7 и 8 классах происходит знакомство с физическими явлениями, методом научного познания, формирование основных физических понятий, приобретение умений измерять физические величины, проводить лабораторный эксперимент по заданной схеме. В 9 классе начинается изучение основных физических законов, лабораторные работы становятся более сложными, школьники учатся планировать эксперимент самостоятельно.

Цели изучения физики в основной школе следующие:

  • Усвоение учащимися смысла основных понятий и законов физики, взаимосвязи между ними;

  • Формирование системы научных знаний о природе, ее фундаментальных законах для построения представления о физической картине мира;

  • Систематизация знаний о многообразии объектов и явлений природы, о закономерностях процессов и о законах физики для осознания возможности разумного использования достижений науки в дальнейшем развитии цивилизации;

  • Формирование убежденности в познаваемости окружающего мира и достоверности научных методов его изучения;

  • Организация экологического мышления и ценностного отношения к природе;

  • Развитие познавательных интересов и творческих способностей учащихся, а также интереса к расширению и углублению физических знаний и выбора физики как профильного предмета.

Достижение целей обеспечивается решением следующих задач:

  • Знакомство учащихся с методом научного познания и методами исследования объектов и явлений природы;

  • Приобретение учащимися знаний о механических, тепловых, электромагнитных и квантовых явлениях, физических величинах, характеризующих эти явления;

  • Формирование у учащихся умений наблюдать природные явления и выполнять опыты, лабораторные работы и экспериментальные исследования с использованием измерительных приборов, широко применяемых в практической жизни;

  • Овладение учащимися такими общенаучными понятиями, как природное явление, эмпирически установленный факт, проблема, гипотеза, теоретический вывод, результат экспериментальной проверки;

  • Понимание учащимися отличий научных данных от непроверенной информации, ценности науки для удовлетворения бытовых, производственных и культурных потребностей человека.

3. Место предмета в учебном плане

В основной школе физика изучается с 7 по 9 класс. Учебный план составляет 238 учебных часов. В том числе в 7, 8, классах по 68, в 9 классе -102 учебных часов из расчета 2 учебных часа в неделю.

В соответствии с учебным планом курсу физики предшествует курс «Окружающий мир», включающий некоторые знания из области физики и астрономии. В 5-6 классах возможно преподавание курса «Введение в естественнонаучные предметы. Естествознание», который можно рассматривать как пропедевтику курса физики. В свою очередь, содержание курса физики основной школы, являясь базовым звеном в системе непрерывного естественнонаучного образования.

4. Личностные, предметные, метапредметные результаты

освоения курса

Личностными результатами обучения физике в основной школе являются:

  • Сформированность познавательных интересов на основе развития интеллектуальных и творческих способностей учащихся;

  • Убежденность в возможности познания природы, в необходимости разумного использования достижений науки и технологий для дальнейшего развития человеческого общества, уважение к творцам науки и техники, отношение к физике как элементу общечеловеческой культуры;

  • Самостоятельность в приобретении новых знаний и практических умений;

  • Готовность к выбору жизненного пути в соответствии с собственными интересами и возможностями;

  • Мотивация образовательной деятельности школьников на основе личностно ориентированного подхода;

  • Формирование ценностных отношений друг к другу, учителю, авторам открытий и изобретений, результатам обучения.

Метапредметными результатами обучения физике в основной школе являются:

  • Овладение навыками самостоятельного приобретения новых знаний, организации учебной деятельности, постановки целей, планирования, самоконтроля и оценки результатов своей деятельности, умениями предвидеть возможные результаты своих действий;

  • Понимание различий между исходными фактами и гипотезами для их объяснения, теоретическими моделями и реальными объектами, овладение универсальными учебными действиями на примерах гипотез для объяснения известных фактов и экспериментальной проверки выдвигаемых гипотез, разработки теоретических моделей процессов или явлений;

  • Формирование умений воспринимать, перерабатывать и предъявлять информацию в словесной, образной, символической формах, анализировать и перерабатывать полученную информацию в соответствии с поставленными задачами, выделять основное содержание прочитанного текста, находить в нем ответы на поставленные вопросы и излагать его;

  • Приобретение опыта самостоятельного поиска, анализа и отбора информации с использованием различных источников и новых информационных технологий для решения познавательных задач;

  • Развитие монологической и диалогической речи, умения выражать свои мысли и способности выслушивать собеседника, понимать его точку зрения, признавать право другого человека на иное мнение;

  • Освоение приемов действий в нестандартных ситуациях, овладение эвристическими методами решения проблем;

  • Формирование умений работать в группе с выполнением различных социальных ролей, представлять и отстаивать свои взгляды и убеждения, вести дискуссию.

Общими предметными результатами изучения курса являются:

  • умение пользоваться методами научного исследования явлений природы: проводить наблюдения, планировать и выполнять эксперименты, обрабатывать измерений, представлять результаты измерений с помощью таблиц, графиков и формул, обнаруживать зависимости между физическими величинами, объяснять результаты и делать выводы, оценивать границы погрешностей результатов измерений;

  • развитие теоретического мышления на основе формирования умений устанавливать факты, различать причины и следствия, использовать физические модели, выдвигать гипотезы, отыскивать и формулировать доказательства выдвинутых гипотез.

Предметные результаты обучения физике в основной школе представлены в содержании курса по темам.

5. Содержание курса

7 класс

(68 ч, 2 ч в неделю)

Введение (4 ч)

Физика - наука о природе. Физические явления. Физические свойства тел. Наблюдение и описание физических явлений. Физические величины. Измерения физических величин: длины, времени, температуры. Физические приборы. Международная система единиц. Точность и погрешность измерений. Физика техника.

Лабораторные работы и опыты

Измерение расстояний. Измерение времени. Определение цены деления шкалы измерительного прибора.

Демонстрации

Наблюдение механических, тепловых, электрических, магнитных и световых явлений: движение стального шарика по желобу колебания маятника, таяние льда, кипение воды, отражение света от зеркала, электризация тел.

Предметными результатами изучения темы являются:

  • понимание физических терминов: тело, вещество, материя.

  • умение проводить наблюдения физических явлений; измерять физические величины: расстояние, промежуток времени, температуру;

  • владение экспериментальными методами исследования при определении цены деления прибора и погрешности измерения;

  • понимание роли ученых нашей страны в развитие современной физики и влияние на технический и социальный прогресс.

Первоначальные сведения о строении вещества (6 ч)

Строение вещества. Опыты, доказывающие атомное строение вещества. Тепловое движение атомов и молекул. Броуновское движение. Диффузия в газах, жидкостях и твердых телах. Взаимодействие частиц вещества. Агрегатные состояния вещества. Модели строения твердых тел, жидкостей и газов. Объяснение свойств газов, жидкостей и твердых тел на основе молекулярно-кинетических представлений.

Лабораторные работы и опыты

Определение размеров малых тел. Обнаружение действия сил молекулярного притяжения. Выращивание кристаллов поваренной соли. Опыты по обнаружению действия сил молекулярного притяжения.

Демонстрации

Диффузия в газах и жидкости. Растворение краски в воде. Расширение тел при нагревании. Модель хаотического движения молекул. Модель броуновского движения. Модель кристаллической решетки. Модель молекулы воды. Сцепление свинцовых цилиндров. Демонстрация расширения твердого тела при нагревании. Сжатие и выпрямление упругого тела. Сжимаемость газов. Сохранение объема жидкости при изменении формы сосуда.

Предметными результатами изучения темы являются:

  • понимание и способность объяснять физические явления: диффузия, большая сжимаемость газов, малая сжимаемость жидкостей и твердых тел.

  • владение экспериментальными методами исследования при определении размеров малых тел;

  • понимание причин броуновского движения, смачивания и несмачивания тел; различия в молекулярном строении твердых тел, жидкостей и газов;

  • умение пользоваться СИ и переводить единицы измерения физических величин в кратные и дольные единицы

  • умение использовать полученные знания, умения и навыки в повседневной жизни (быт, экология, охрана окружающей среды).

Взаимодействия тел (23 ч)

Механическое движение. Траектория. Путь. Равномерное и неравномерное движение. Скорость. Графики зависимости пути и модуля скорости от времени движения. Инерция. Инертность тел. Взаимодействие тел. Масса тела. Измерение массы тела. Плотность вещества. Сила. Сила тяжести. Сила упругости. Закон Гука. Вес тела. Связь между силой тяжести и массой тела. Сила тяжести на других планетах. Динамометр. Сложение двух сил, направленных по одной прямой. Равнодействующая двух сил. Сила трения. Физическая природа небесных тел Солнечной системы

Лабораторные работы и опыты

Измерение плотности твердого тела. Измерение массы тела на рычажных весах. Исследование зависимости удлинения стальной пружины от приложенной силы. Сложение сил, направленных по одной прямой. Исследование условий равновесия рычага. Нахождение центра тяжести плоского тела. Исследование зависимости силы трения скольжения от площади соприкосновения тел и силы нормального давления. Градуирование пружины и измерение сил динамометром.

Демонстрации

Траектория движения шарика на шнуре и шарика, подбрасываемого вверх. Явление инерции. Равномерное движение пузырька воздуха в стеклянной трубке с водой. Различные виды весов. Сравнение масс тел с помощью равноплечных весов. Взвешивание воздуха. Сравнение масс различных тел, имеющих одинаковый объем; объемов тел, имеющих одинаковые массы. Измерение силы по деформации пружины. Свойства силы трения. Сложение сил. Равновесие тела, имеющего ось вращения. Способы уменьшения и увеличения силы трения. Подшипники различных видов.

Предметными результатами изучения темы являются:

  • понимание и способность объяснять физические явления: механическое -движение, равномерное и неравномерное движение, инерция, всемирное тяготение

  • умение измерять скорость, массу, силу, вес, силу трения скольжения, силу трения качения, объем, плотность, тела равнодействующую двух сил, действующих на тело в одну и в противоположные стороны

  • владение экспериментальными методами исследования в зависимости пройденного пути от времени, удлинения пружины от приложенной силы, силы тяжести тела от массы тела, силы трения скольжения от площади соприкосновения тел и силы нормального давления

  • понимание смысла основных физических законов: закон всемирного тяготения, закон Гука

  • владение способами выполнения расчетов при нахождении: скорости (средней скорости), пути, времени, силы тяжести, веса тела, плотности тела, объема, массы, силы упругости, равнодействующей двух сил, направленных по одной прямой в соответствие с условиями поставленной задачи на основании использования законов физики

  • умение находить связь между физическими величинами: силой тяжести и массой тела, скорости со временем и путем, плотности тела с его массой и объемом, силой тяжести и весом тела

  • умение переводить физические величины из несистемных в СИ и наоборот

  • понимание принципов действия динамометра, весов, встречающихся в повседневной жизни, и способов обеспечения безопасности при их использовании

  • умение использовать полученные знания, умения и навыки в повседневной жизни, быту, охране окружающей среды.

Давление твердых тел, жидкостей и газов (21 ч)

Давление. Давление твердых тел. Давление газа. Объяснение давления газа на основе молекулярно-кинетических представлений. Передача давления газами и жидкостями. Закон Паскаля. Сообщающие сосуды. Атмосферное давление. Методы измерение атмосферного давления. Барометр, манометр, насос. Закон Архимеда. Условия плавания тел. Воздухоплавание.

Лабораторные работы и опыты

Определение выталкивающей силы, действующей на тело, погруженное в жидкость. Выяснение условий плавания тела в жидкости. Измерение атмосферного давления.

Демонстрации

Зависимость давления от действующей силы и площади опоры. Разрезание пластилина тонкой проволокой. Давление газа на стенки сосуда. Шар Паскаля. Давление внутри жидкости. Сообщающиеся сосуды. Устройство манометра. Обнаружение атмосферного давления. Измерение атмосферного давления барометром-анероидом. Устройство и действие гидравлического пресса. Устройство и действие насоса. Действие на тело архимедовой силы в жидкости и газе. Плавание тел. Опыт Торричелли

Предметными результатами изучения темы являются:

  • понимание и способность объяснить физические явления: атмосферное давление, давление жидкостей, газов и твердых тел, плавание тел, воздухоплавание, расположение уровня жидкости в сообщающихся сосудах, существование воздушной оболочки Землю, способы уменьшения и увеличения давления

  • умение измерять: атмосферное давление, давление жидкости на дно и стенки сосуда, силу Архимеда

  • владение экспериментальными методами исследования зависимости: силы Архимеда от объема вытесненной воды, условий плавания тела в жидкости от действия силы тяжести и силы Архимеда

  • понимание смысла основных физических законов и умение применять их на практике: закон Паскаля, закон Архимеда

  • понимание принципов действия барометра-анероида, манометра, насоса, гидравлического пресса, с которыми человек встречается в повседневной жизни и способов обеспечения безопасности при их использовании

  • владение способами выполнения расчетов для нахождения давления, давление жидкости на дно и стенки сосуда, силы Архимеда в соответствие с поставленной задачи на основании использования законов физики

  • умение использовать полученные знания, умения и навыки в повседневной жизни, экологии, быту, охране окружающей среды, технике безопасности.

Работа и мощность. Энергия (14 ч)

Механическая работа. Мощность. Простые механизмы. Момент силы. Условия равновесия рычага. «Золотое правило» механики. Виды равновесия. Коэффициент полезного действия (КПД). Энергия. Потенциальная и кинетическая энергия. Превращение энергии.

Лабораторные работы и опыты

Выяснение условия равновесия рычага. Определение КПД при подъеме тела по наклонной плоскости. Нахождение центра тяжести плоского тела.

Демонстрации

Простые механизмы. Превращение энергии при колебаниях маятника, раскручивании пружины заводной игрушки, движение «сегнерова» колеса Измерение работы при перемещении тела. Устройство и действие рычага, блоков. Равенство работ при использовании простых механизмов. Устойчивое, неустойчивое и безразличное равновесия тел.

Предметными результатами изучения темы являются:

  • понимание и способность объяснять физические явления: равновесие тел превращение одного вида механической энергии другой

  • умение измерять: механическую работу, мощность тела, плечо силы, момент силы. КПД, потенциальную и кинетическую энергию

  • владение экспериментальными методами исследования при определении соотношения сил и плеч, для равновесия рычага

  • понимание смысла основного физического закона: закон сохранения энергии

  • понимание принципов действия рычага, блока, наклонной плоскости, с которыми человек встречается в повседневной жизни и способов обеспечения безопасности при их использовании.

  • владение способами выполнения расчетов для нахождения: механической работы, мощности, условия равновесия сил на рычаге, момента силы, КПД, кинетической и потенциальной энергии

  • умение использовать полученные знания, умения и навыки в повседневной жизни, экологии, быту, охране окружающей среды, технике безопасности.

8 класс

(68 ч), 2 ч в неделю)

Тепловые явления (24 ч)

Тепловое движение. Тепловое равновесие. Температура. Внутренняя энергия. Работа и теплопередача. Теплопроводность. Конвекция. Излучение. Количество теплоты. Удельная теплоемкость. Расчет количества теплоты при теплообмене. Закон сохранения и превращения энергии в механических и тепловых процессах.

Плавление и отвердевание кристаллических тел. Удельная теплота плавления. Испарение и конденсации. Кипение. Влажность воздуха. Удельная теплота парообразования и конденсации. Объяснение изменения агрегатного состояния вещества на основе молекулярно-кинетических представлений. Закон сохранения энергии в тепловых процессах. Преобразование энергии в тепловых машинах. Двигатель внутреннего сгорания. Паровая турбина. КПД теплового двигателя. Экологические проблемы использования тепловых машин.

Лабораторные работы и опыты

Изучение явления теплообмена при смешивании холодной и горячей воды.

Наблюдение изменений внутренней энергии тела в результате теплопередачи и работы внешних сил.

Измерение удельной теплоемкости твердого тела.

Измерение удельной теплоты плавления льда.

Сравнение количеств теплоты при смешивании воды разной температуры.

Исследование процесса испарения.

Исследование тепловых свойств парафина.

Измерение влажности воздуха.

Демонстрации

Нагревание жидкости в латунной трубке.

Нагревание жидкостей на двух горелках.

Нагревание воды при сгорании сухого горючего в горелке.

Охлаждение жидкости при испарении.

Наблюдение процесса нагревания и кипения воды в стеклянной колбе.

Принцип действия термометра.

Теплопроводность различных материалов.

Конвекция в жидкостях и газах.

Теплопередача путем излучения.

Явление испарения.

Наблюдение конденсации паров воды на стакане со льдом.

Устройство калориметра.

Модель кристаллической решетки.

Предметными результатами при изучении темы являются:

  • понимание и способность объяснять физические явления: конвекция, излучение, теплопроводность, изменение внутренней энергии тела в результате теплопередачи или работы внешних сил, испарение (конденсация) и плавление (отвердевание) вещества, охлаждение жидкости при испарении, конденсация, кипение, выпадение росы

  • умение измерять: температуру, количество теплоты, удельную теплоемкость вещества, удельную теплоту плавления вещества, удельная теплоту парообразования, влажность воздуха

  • владение экспериментальными методами исследования ависимости относительной влажности воздуха от давления водяного пара, содержащегося в воздухе при данной температуре и давления насыщенного водяного пара: определения удельной теплоемкости вещества

  • понимание принципов действия конденсационного и волосного гигрометров психрометра, двигателя внутреннего сгорания, паровой турбины с которыми человек постоянно встречается в повседневной жизни, и способов обеспечения безопасности при их использовании

  • понимание смысла закона сохранения и превращения энергии в механических и тепловых процессах и умение применять его на практике

  • овладение разнообразными способами выполнения расчетов для нахождения удельной теплоемкости, количества теплоты, необходимого для Рабочая программа по физике с учетом ФГОС. 7-9 классынагревания тела или выделяемого им при охлаждении, удельной теплоты сгорания, удельной теплоты плавления, влажности воздуха, удельной теплоты парообразования и конденсации, КПД теплового двигателя в соответствии с условиями поставленной задачи на основании использования законов физики

  • умение использовать полученные знания, умения и навыки в повседневной жизни, экологии, быту, охране окружающей среды, технике безопасности.

Электрические явления (29 ч)

Электризация тел. Два рода электрических зарядов. Взаимодействие заряженных тел. Проводники, диэлектрики и полупроводники. Электрическое поле. Закон сохранения электрического заряда. Делимость электрического заряда. Электрон. Строение атома. Электрический ток. Действие электрического поля на электрические заряды. Источники тока. Электрическая цепь. Сила тока. Электрическое напряжение. Электрическое сопротивление. Закон Ома для участка цепи. Последовательное и параллельное соединение проводников. Работа и мощность электрического тока. Закон Джоуля-Ленца. Конденсатор. Правила безопасности при работе с электроприборами.

Лабораторные работы и опыты

Опты по наблюдению электризации тел при соприкосновении.

Проводники и диэлектрики в электрическом поле.

Изготовление и испытание гальванического элемента.

Измерение силы электрического тока.

Измерение напряжения на различных участках электрической цепи.

Исследование зависимости электрического сопротивления проводника от его длины, площади поперечного сечения и материала.

Исследование зависимости силы тока в проводнике от напряжения.

Измерение сопротивления проводника при помощи амперметра и вольтметра.

Изучение последовательного соединения проводников.

Изучение параллельного соединения проводников.

Измерение мощности и работы тока в электрической лампе.

Изучение работы полупроводникового диода.

Сборка электрической цепи и измерение силы тока в ее различных участках.

Регулирование силы тока реостатом.

Демонстрации

Электризация тел.

Взаимодействие наэлектризованных тел.

Два рода электрических зарядов.

Устройство и действие электроскопа.

Обнаружение поля заряженного шара.

Делимость электрического заряда.

Взаимодействие параллельных проводников при замыкании цепи.

Устройство конденсатора.

Проводники и изоляторы.

Измерение силы тока амперметром.

Измерение напряжения вольтметром.

Реостат и магазин сопротивлений.

Предметными результатами при изучении темы являются:

  • понимание и способность объяснять физические явления: электризация тел, нагревание проводников электрическим током, электрический ток в металлах, электрические явления в позиции строения атома, действия электрического тока

  • умение измерять силу электрического тока, электрическое напряжение, электрический заряд, электрическое сопротивление

  • владение экспериментальными методами исследования зависимости силы тока на участке цепи от электрического напряжения, электрического сопротивления проводника от его длины, площади поперечного сечения и материала

  • понимание смысла закона сохранения электрического заряда, закона Ома для участка цепи. Закона Джоуля-Ленца

  • понимание принципа действия электроскопа, электрометра, гальванического элемента, аккумулятора, фонарика, реостата, конденсатора, лампы накаливания, с которыми человек сталкивается в повседневной жизни, и способов обеспечения безопасности при их использовании

  • владение различными способами выполнения расчетов для нахождения силы тока, напряжения, сопротивления при параллельном и последовательном соединении проводников, удельного сопротивления работы и мощности электрического тока, количества теплоты, выделяемого проводником с током, емкости конденсатора, работы электрического поля конденсатора, энергии конденсатора

  • умение использовать полученные знания, умения и навыки в повседневной жизни, экологии, быту, охране окружающей среды, технике безопасности.

Электромагнитные явления (5 ч)

Опыт Эрстеда. Магнитное поле. Магнитное поле прямого тока. Магнитное поле катушки с током. Постоянные магниты. Магнитное поле постоянных магнитов. Магнитное поле Земли. Взаимодействие магнитов. Действие магнитного поля на проводник с током. Электрический двигатель.

Лабораторные работы и опыты

Исследование явления магнитного взаимодействия тел.

Исследование явления намагничивания вещества.

Исследование действия электрического тока на магнитную стрелку.

Изучение действия магнитного поля на проводник с током.

Изучение действия электродвигателя.

Сборка электромагнита и испытание его действия.

Изучение электрического двигателя постоянного тока (на модели).

Демонстрации

Опыт Эрстеда.

Магнитное поле тока.

Действие магнитного поля на проводник с током.

Взаимодействие постоянных магнитов.

Устройство и действие компаса.

Устройство электродвигателя.

Предметными результатами изучения темы являются:

  • понимание и способность объяснять физические явления: намагниченность железа и стали, взаимодействие магнитов, взаимодействие проводника с током и магнитной стрелки, действие магнитного поля на проводник с током

  • владение экспериментальными методами исследования зависимости магнитного действия катушки от силы тока в цепи

  • умение использовать полученные знания, умения и навыки в повседневной жизни, экологии, быту, охране окружающей среды, технике безопасности.

Световые явления (10 ч)

Источники света. Прямолинейное распространение света. Видимое движение светил. Отражение света. Закон отражения света. Плоское зеркало. Преломление света. Закон преломления света. Линзы. Фокусное расстояние линзы. Оптическая сила линзы. Изображения, даваемые линзой. Глаз как оптическая система. Оптические приборы.

Лабораторные работы и опыты

Изучение явления распространения света.

Исследование зависимости угла отражения света от угла падения.

Изучение свойств изображения в плоском зеркале.

Измерение фокусного расстояния собирающей линзы.

Получение изображений при помощи линзы.

Демонстрации

Прямолинейное распространение света.

Получение тени и полутени.

Отражение света.

Преломление света.

Ход лучей в собирающей линзе.

Ход лучей в рассеивающей линзе.

Получение изображений с помощью линз.

Принцип действия проекционного аппарата и фотоаппарата.

Модель глаза.

Предметными результатами изучения темы являются:

  • понимание и способность объяснять физические явления: прямолинейное распространения света, образование тени и полутени, отражение и преломление света

  • умение измерять фокусное расстояние собирающей линзы, оптическую силу линзы

  • владение экспериментальными методами исследования зависимости изображения от расположения лампы на различных расстояниях от линзы, угла отражения от угла падения света на зеркало

  • понимание смысла основных физических законов и умение применять их на практике: закон отражения и преломления света, закон прямолинейного распространения света

  • различать фокус линзы, мнимый фокус и фокусное расстояние линзы, оптическую силу линзы и оптическую ось линзы, собирающую и рассеивающую линзы, изображения, даваемые собирающей и рассеивающей линзой

  • умение использовать полученные знания, умения и навыки в повседневной жизни, экологии, быту, охране окружающей среды , технике безопасности.


9 класс

(102 ч, 3 ч в неделю)

Законы взаимодействия и движения тел (34 ч)

Материальная точка. Система отсчета.

Перемещение. Скорость прямолинейного равномерного движения.

Прямолинейное равноускоренное движение: мгновенная скорость, ускорение, перемещение.

Графики зависимости кинематических величин от времени при равномерном и равноускоренном движении.

Относительность механического движения. Геоцентрическая и гелиоцентрическая системы мира.

Инерциальная система отсчета. Первый, второй и третий законы Ньютона.

Свободное падение. Невесомость. Закон всемирного тяготения. [Искусственные спутники Земли.]

Импульс. Закон сохранения импульса. Реактивное движение.

Фронтальные лабораторные работы

1. Исследование равноускоренного движения без начальной скорости.

2. Измерение ускорения свободного падения.

Предметными результатами изучения темы являются:

  • понимание и способность описывать и объяснять физические явления: поступательное движение (назвать отличительный признак), смена дня и ночи на Земле, свободное падение тел. невесомость, движение по окружности с постоянной по модулю скоростью;

  • знание и способность давать определения /описания физических понятий: относительность движения (перечислить, в чём проявляется), геоцентрическая и гелиоцентрическая системы мира; [первая космическая скорость], реактивное движение; физических моделей: материальная точка, система отсчёта, физических величин: перемещение, скорость равномерного прямолинейного движения, мгновенная скорость и ускорение при равноускоренном прямолинейном движении, скорость и центростремительное ускорение при равномерном движении тела по окружности, импульс;

  • понимание смысла основных физических законов: динамики Ньютона, всемирного тяготения, сохранения импульса, сохранения энергии), умение применять их на практике и для решения учебных задач;

  • умение приводить примеры технических устройств и живых организмов, в основе перемещения которых лежит принцип реактивного движения. Знание и умение объяснять устройство и действие космических ракет-носителей;

  • умение использовать полученные знания, умения и навыки в повседневной жизни (быт, экология, охрана здоровья, техника безопасности и др.);

  • умение измерять мгновенную скорость и ускорение при равноускоренном прямолинейном движении, центростремительное ускорение при равномерном движении по окружности.

Механическое колебание и волны. Звук (16 ч)

Колебательное движение. Колебания груза на пружине. Свободные колебания. Колебательная система. Маятник. Амплитуда, период, частота колебаний. [Гармонические колебания].

Превращение энергии при колебательном движении. Затухающие колебания. Вынужденные колебания. Резонанс.

Распространение колебаний в упругих средах. Поперечные и продольные волны. Длина волны. Связь длины волны со скоростью ее распространения и

периодом (частотой).

Звуковые волны. Скорость звука. Высота, тембр и громкость звука. Эхо. Звуковой резонанс. [Интерференция звука]

Фронтальные лабораторные работы

3. Исследование зависимости периода и частоты свободных колебаний маятника от длины его нити.

Предметными результатами изучения темы являются:

  • понимание и способность описывать и объяснять физические явления: колебания нитяного (математического) и пружинного маятников, резонанс (в т. ч. звуковой), механические волны, длина волны, отражение звука, эхо;

  • знание и способность давать определения физических понятий: свободные колебания, колебательная система, маятник, затухающие колебания, вынужденные колебания, звук и условия его распространения; физических величин: амплитуда, период, частота колебаний, собственная частота колебательной системы, высота, [тембр], громкость звука, скорость звука; физических моделей: [гармонические колебания], математический маятник;

  • владение экспериментальными методами исследования зависимости периода колебаний груза на нити от длины нити.

Электромагнитное поле (26 ч)

Однородное и неоднородное магнитное поле.

Направление тока и направление линий его магнитного поля. Правило буравчика.

Обнаружение магнитного поля. Правило левой руки.

Индукция магнитного поля. Магнитный поток. Опыты Фарадея. Электромагнитная индукция. Направление индукционного тока. Правило Ленца. Явление самоиндукции.

Переменный ток. Генератор переменного тока. Преобразования энергии в электрогенераторах. Трансформатор. Передача электрической энергии на расстояние.

Электромагнитное поле. Электромагнитные волны. Скорость распространения электромагнитных волн. Влияние электромагнитных излучений на живые организмы.

Колебательный контур. Получение электромагнитных колебаний. Принципы радиосвязи и телевидения.

[Интерференция света.] Электромагнитная природа света. Преломление света. Показатель преломления. Дисперсия света. Цвета тел. [Спектрограф и спектроскоп.] Типы оптических спектров. [Спектральный анализ.] Поглощение и испускание света атомами. Происхождение линейчатых спектров.

Фронтальные лабораторные работы

4. Изучение явления электромагнитной индукции.

5. Наблюдение сплошного и линейчатых спектров испускания.

Предметными результатами изучения темы являются:

  • понимание и способность описывать и объяснять физические явления/процессы: электромагнитная индукция, самоиндукция, преломление света, дисперсия света, поглощение и испускание света атомами, возникновение линейчатых спектров излучения и поглощения;

  • умение давать определения / описание физических понятий: магнитное поле, линии магнитной индукции; однородное и неоднородное магнитное поле, магнитный поток, переменный электрический ток, электромагнитное поле, электромагнитные волны, электромагнитные колебания, радиосвязь, видимый свет; физических величин: магнитная индукция, индуктивность, период, частота и амплитуда электромагнитных колебаний, показатели преломления света;

  • знание формулировок, понимание смысла и умение применять закон преломления света и правило Ленца, квантовых постулатов Бора;

  • знание назначения, устройства и принципа действия технических устройств: электромеханический индукционный генератор переменного тока, трансформатор, колебательный контур; детектор, спектроскоп, спектрограф;

  • понимание сути метода спектрального анализа и его возможностей.

Строение атома и атомного ядра (19 ч)

Радиоактивность как свидетельство сложного строения атомов. Альфа-, бета- и гамма-излучения.

Опыты Резерфорда. Ядерная модель атома.

Радиоактивные превращения атомных ядер. Сохранение зарядового и массового чисел

Экспериментальные методы исследования частиц.

Протонно-нейтронная модель ядра. Физический смысл зарядового и массового чисел. Изотопы. Правила смещения для альфа- и бета-распада

Энергия связи частиц в ядре. Деление ядер урана.

Цепная реакция. Ядерная энергетика. Экологические проблемы работы атомных электростанций.

Дозиметрия. Период полураспада. Закон радиоактивного распада. Влияние радиоактивных излучений на живые организмы.

Термоядерная реакция. Источники энергии Солнца и звезд.

Фронтальные лабораторные работы

6. Измерение естественного радиационного фона дозиметром.

7. Изучение деления ядра атома урана по фотографии треков.

8. Оценка периода полураспада находящихся в воздухе продуктов распада газа радона.

9. Изучение треков заряженных частиц по готовым фотографиям.

Предметными результатами изучения темы являются:

  • понимание и способность описывать и объяснять физические явления: радиоактивность, ионизирующее излучение;

  • знание и способность давать определения/описания физических понятий: радиоактивность, альфа-, бета- и гамма-частицы; физических моделей: модели строения атомов, предложенные Д. Д. Томсоном и Э. Резерфордом; протонно-нейтронная модель атомного ядра, модель процесса деления атома урана; физических величин: поглощенная доза излучения, коэффициент качества, эквивалентная доза, период полураспада;

  • умение приводить примеры и объяснять устройство и принцип действия технических устройств и установок: счетчик Гейгера, камера Вильсона, пузырьковая камера, ядерный реактор на медленных нейтронах;

  • умение измерять: мощность дозы радиоактивного излучения бытовым дозиметром;

  • знание формулировок, понимание смысла и умение применять: закон сохранения массового числа, закон сохранения заряда, закон радиоактивного распада, правило смещения;

  • владение экспериментальными методами исследования в процессе изучения зхависимости мощности излучения продуктов распада радона от времени;

  • понимание сути экспериментальных методов исследования частиц;

  • использование полученных знаний в повседневной жизни (быт, экология, охрана окружающей среды, техника безопасности и др.).

Строение и эволюция Вселенной (5 ч)

Состав, строение и происхождение Солнечной системы.

Планеты и малые тела Солнечной системы.

Строение, излучение и эволюция Солнца и звёзд.

Строение и эволюция Вселенной.

Частными предметными результатами изучения темы являются:

  • представление о составе, строении, происхождении и возрасте Солнечной системы;

  • умение применять физические законы для объяснения движения планет Солнечной системы,

  • знать, что существенными параметрами, отличающими звёзды от планет, являются их массы и источники энергии (термоядерные реакции в недрах звёзд и радиоактивные в недрах планет);

  • сравнивать физические и орбитальные параметры планет земной группы с соответствующими параметрами планет-гигантов и находить в них общее и различное;

  • объяснять суть эффекта Х. Доплера; формулировать и объяснять суть закона Э. Хаббла, знать, что этот закон явился экспериментальным подтверждением модели нестационарной Вселенной, открытой А. А. Фридманом.

Резервное время - 2 ч.

Общими предметными результатами изучения курса являются:

  • умение пользоваться методами научного исследования явлений природы: проводить наблюдения, планировать и выполнять эксперименты, обрабатывать измерений, представлять результаты измерений с помощью таблиц, графиков и формул, обнаруживать зависимости между физическими величинами, объяснять результаты и делать выводы, оценивать границы погрешностей результатов измерений;

  • развитие теоретического мышления на основе формирования умений устанавливать факты, различать причины и следствия, использовать физические модели, выдвигать гипотезы, отыскивать и формулировать доказательства выдвинутых гипотез.

6. Тематическое планирование

№ урока, тема

Содержание урока

Вид деятельности
ученика

7 класс (68 ч, 2 ч в неделю)

Введение (4 ч)

1/1. Что изучает физика. Некоторые физические термины. Наблюдения и опыты

Физика - наука о природе. Физические явления, вещество, тело, материя. Физические свойства тел. Основные методы изучения физики (наблюдения, опыты), их различие.

Демонстрации. Скатывание шарика по желобу, колебания маятника, соприкасающегося со звучащим камертоном, нагревание спирали электрическим током, свечение нити электрической лампы, показ наборов тел и веществ

- Объяснять, описывать физические явления, отличать физические явления от химических;

- проводить наблюдения физических явлений, анализировать и классифицировать их, различать методы изучения физики

2/2. Физические величины. Измерение физических величин. Точность и погрешность измерений

Понятие о физической величине. Международная система единиц. Простейшие измерительные приборы. Цена деления прибора. Нахождение погрешности измерения.

Демонстрации. Измерительные приборы: линейка, мензурка, измерительный цилиндр, термометр, секундомер, вольтметр и др.

Опыты. Измерение расстояний. Измерение времени между ударами пульса

- Измерять расстояния, промежутки времени, температуру;

- обрабатывать результаты измерений;

- определять цену деления шкалы измерительного цилиндра;

- научиться пользоваться измерительным цилиндром, с его помощью определять объем жидкости;

переводить значения физических величин в СИ, определять погрешность измерения. Записывать результат измерения с учетом погрешности

3/3.

Лабораторная работа № 1

Лабораторная работа № 1 «Определение цены деления измерительного прибора».

Находить цену деления любого Измерительного прибора, Представлять результаты измерений в виде таблиц, анализировать результаты по определению цены деления измерительного прибора, делать выводы, работать в группе

4/4. Физика и техника

Современные достижения науки. Роль физики и ученых нашей страны в развитии технического прогресса. Влияние технологических процессов на окружающую среду.

Демонстрации. Современные технические и бытовые приборы

- Выделять основные этапы развития физической науки и называть имена

выдающихся ученых;

- определять место физики как науки, делать выводы о развитии физической науки и ее достижениях, составлять план презентации

Первоначальные сведения о строении вещества (6 ч)

5/1. Строение вещества. Молекулы. Броуновское движение .

Представления о строении вещества. Опыты, подтверждающие, что все вещества состоят из отдельных частиц. Молекула - мельчайшая частица вещества. Размеры молекул.

Демонстрации. Модели молекул воды и кислорода, модель хаотического движения молекул в газе, изменение объема твердого тела и жидкости при нагревании

- Объяснять опыты, подтверждающие молекулярное строение вещества, броуновское движение;

- схематически изображать молекулы воды и кислорода;

- определять размер малых тел;

- сравнивать размеры молекул разных веществ: воды, воздуха;

объяснять: основные свойства молекул, физические явления на основе знаний о строении вещества

6/2. Лабораторная работа 3

Лабораторная работа № 2 «Определение размеров малых тел».

Измерять размеры малых тел методом рядов, различать способы измерения размеров малых тел, представлять результаты измерений в виде таблиц, выполнять исследовательский эксперимент по определению размеров малых тел, делать выводы; работать в группе

7/3. Движение молекул

Диффузия в жидкостях, газах и твердых телах. Связь скорости диффузии и температуры тела.

Демонстрации. Диффузия в жидкостях и газах. Модели строения кристаллических тел, образцы кристаллических тел.

Опыты. Выращивание кристаллов поваренной соли

- Объяснять явление диффузии и зависимость скорости ее протекания от температуры тела;

- приводить примеры диффузии в окружающем мире;

- наблюдать процесс образования кристаллов; анализировать результаты опытов по движению и диффузии, проводить исследовательскую работу по выращиванию кристаллов, делать выводы

8/4. Взаимодействие молекул

Физический смысл взаимодействия молекул. Существование сил взаимного притяжения и отталкивания молекул. Явление смачивания и не смачивания тел.

Демонстрации. Разламывание хрупкого тела и соединение его частей, сжатие и выпрямление упруго тела, сцепление твердых тел, не смачивание птичьего пера.

Опыты. Обнаружение действия сил молекулярного притяжения

- Проводить и объяснять опыты по обнаружению сил взаимного притяжения и отталкивания молекул;

- объяснять опыты смачивания и не смачивания тел;

- наблюдать и исследовать явление смачивания и несмачивания тел, объяснять данные явления на основе знаний о взаимодействии: молекул, проводить эксперимент по обнаружению действия сил молекулярного притяжения, делать выводы

9/5. Агрегатные состояния вещества. Свойства газов, жидкостей и твердых тел

Агрегатные состояния вещества. Особенности трех агрегатных состояний. Объяснение свойств газов, жидкостей и твердых тел на основе молекулярного строения.

Демонстрации. Сохранение жидкостью объема, заполнение газом всего предоставленного ему объема, сохранение твердым телом формы

- Доказывать наличие различия в молекулярном строении твердых тел, жидкостей и газов;

приводить примеры практического использования свойств веществ в различных агрегатных состояниях.

- выполнять исследовательский эксперимент по изменению агрегатного состояния воды, анализировать его и делать выводы

10/6. Зачет

Зачет по теме «Первоначальные сведения о строении вещества»

Взаимодействие тел (23 ч)

11/1. Механическое движение. Равномерное и неравномерное движение

Механическое движение - самый простой вид движения. Траектория движения тела, путь. Основные единицы пути в СИ. Равномерное и неравномерное движение. Относительность движения.

Демонстрации. Равномерное и неравномерное движение шарика по желобу. Относительность механического движения, с использованием заводного автомобиля. Изучение траектории движения мела по доске, движение шарика по горизонтальной опоре.

- Определять траекторию движения тела. Доказывать относительность движения тела;

- переводить основную единицу пути в км, мм, см, дм;

- различать равномерное и неравномерное движение;

- определять тело относительно, которого происходит движение;

- использовать межпредметные связи физики, географии, математики:

- проводить эксперимент по изучению механического движения, сравнивать опытные данные, делать выводы.

12/2. Скорость. Единицы скорости

Скорость равномерного и неравномерного движения. Векторные и скалярные физические величины. Единицы измерения скорости. Определение скорости, вывод формул. Решение задач.

Демонстрации. Движение заводного автомобиля по горизонтальной поверхности.

Опыты. Измерение скорости равномерного движения воздушного пузырька в трубке с водой

- Рассчитывать скорость тела при равномерном и среднюю скорость при неравномерном движении;

- выражать скорость в км/ч, м/с;

- анализировать таблицы скоростей;

- определять среднюю скорость движения заводного автомобиля; графически изображать скорость, описывать равномерное движение.

Применять знания из курса географии, математики

13/3. Расчет пути и времени движения

Определение пути, пройденного телом при равномерном движении по формуле и с помощью графиков. Нахождение времени движения тел. Решение задач.

Демонстрации. Движение заводного автомобиля

- Представлять результаты измерений и вычислений в виде таблиц и графиков;

- определять путь, пройденный за данный промежуток времени, скорость тела по графику зависимости пути равномерного движения от времени; оформлять расчетные задачи

14/4. Инерция

Явление инерции.

Проявление явления инерции в быту и технике. Решение задач.

Демонстрации. Движение тележки по гладкой поверхности и усыпанной песком. Насаживание молотка на рукоятку

- Находить связь между взаимодействием тел и скоростью их движения;

- приводить примеры проявления явления инерции в быту; объяснять явление инерции;

- проводить исследовательский эксперимент по изучению явления инерции.

анализировать его и делать выводы

15/5. Взаимодействие тел

Изменение скорости тел при взаимодействии.

Демонстрации. Изменение скорости движения тележек в результате взаимодействия. Движение шарика по наклонному желобу и ударяющемуся о такой же неподвижный шарик

- Описывать явление взаимодействия тел;

- приводить примеры взаимодействия тел, приводящего к изменению скорости;

- объяснять опыты по взаимодействию тел и делать выводы

16/6. Масса тела. Единицы массы. Измерение массы тела на весах

Масса. Масса - мера инертности тела. Инертность - свойство тела. Единицы массы. Перевод основной единицы массы в СИ в т, г, мг. Определение массы тела в результате его взаимодействия с другими телами. Выяснение условий равновесия учебных весов.

Демонстрации. Гири различной массы. Монеты различного достоинства. Сравнение массы тел по изменению их скорости при взаимодействии. Различные виды весов. Взвешивание монеток на демонстрационных весах

- Устанавливать зависимость изменение скорости движения тела от его массы;

- переводить основную единицу массы в т, г, мг;

- работать с текстом учебника, выделять главное, систематизировать и обобщать, полученные сведения о массе тела, различать инерцию и инертность тела

17/7. Лабораторная работа № 3

Лабораторная работа № 3 «Измерение массы тела на рычажных весах».

- Взвешивать тело на учебных весах и с их помощью определять массу тела;

- пользоваться разновесами;

- применять и вырабатывать практические навыки работы с приборами.

Работать в группе

18/8. Плотность вещества

Плотность вещества. Физический смысл плотности вещества. Единицы плотности. Анализ таблиц учебника. Изменение плотности одного и того же вещества в зависимости от его агрегатного состояния.

Демонстрации. Сравнение масс тел, имеющих одинаковые объемы. Жидкости одинаковой массы могу иметь разный объем

- Определять плотность вещества;

- анализировать табличные данные;

- переводить значение плотности из кг/м в г/см3;

- применять знания из курса природоведения, математики, биологии.

19/9. Лабораторная работа № 4. Лабораторная работа № 5

Определение объема тела с помощью измерительного цилиндра. Определение плотности твердого и жидкого тела с помощью весов и измерительного цилиндра.

Лабораторная работа № 4 «Измерение объема тела».

Лабораторная работа № 5 «Определение плотности твердого тела»

- Измерять объем тела с помощью измерительного цилиндра;

- измерять плотность твердого тела и жидкости с помощью весов и измерительного цилиндра;

- анализировать результаты измерений и вычислений, делать выводы;

- составлять таблицы;

работать в группе

20/10. Расчет массы и объема тела по его плотности

Определение массы тела по его объему и плотности. Определение объема тела. Решение задач.

Демонстрации. Измерение объема деревянного бруска

- Определять массу тела по его объему и плотности;

записывать формулы для нахождения массы тела, его объема и плотности веществ.

Работать с табличными данными.

21/11. Решение задач

Решение задач по темам: «Механическое движение», «Масса». «Плотность вещества»

Использовать знания из курса математики и физики при расчете массы тела, его плотности или объема. Анализировать результаты, полученные при решении задач.

22/12. Контрольная работа

Контрольная работа по темам: «Механическое движение», «Масса», «Плотность вещества»

Применять знания к решению задач.

23/13. Сила

Анализ итогов контрольной работы. Изменение скорости тела при действии на него других тел. Сила - причина изменения скорости движения. Сила - векторная физическая величина. Графическое изображение силы. Сила мера взаимодействия тел.

Демонстрации. Взаимодействие шаров при столкновении. Сжатие упругого тела. Притяжение магнитом стального тела

- Графически, в масштабе изображать силу и точку ее приложения;

Определять зависимость изменения скорости тела от приложенной силы.

Анализировать опыты по столкновению шаров, сжатию упругого тела и делать выводы.

24/14. Явление тяготения. Сила тяжести. Сила тяжести на других планетах

Сила тяжести. Наличие тяготения между всеми телами. Зависимость силы тяжести от массы. Направление силы тяжести. Свободное падение тел. Сила тяжести на других планетах.

Демонстрации. Движение тела, брошенного горизонтально. Падение стального шарика в сосуд с песком. Падение шарика, подвешенного на нити. Свободное падение тел в трубке Ньютона

- Приводить примеры проявления тяготения в окружающем мире.

- Находить точку приложения и указывать направление силы тяжести.

- различать изменение силы тяжести от удаленности поверхности Земли; Выделять особенности планет земной группы и планет-гигантов (различие и общие свойства);

- самостоятельно работать с текстом, систематизировать и обобщать знания о явлении тяготения и делать выводы.

25/15. Сила упругости. Закон Гука

Возникновение силы упругости. Природа силы упругости. Опытные подтверждения существования силы упругости. Формулировка закона Гука. Точка приложения силы упругости и направление ее действия.

Демонстрации. Виды деформации. Измерение силы по деформации пружины

Опыты. Исследование зависимости удлинения стальной пружины от приложенной силы

- Отличать силу упругости от силы тяжести;

- графически изображать силу упругости, показывать точку приложения и направление ее действия;

- объяснять причины возникновения силы упругости.

- приводить примеры видов деформации, встречающиеся в быту, делать выводы

26/16. Вес тела. Единицы силы. Связь между силой тяжести и массой тела

Вес тела. Вес тела - векторная физическая величина. Отличие веса тела от силы тяжести. Точка приложения веса тела и направление ее действия. Единица силы. Формула для определения силы тяжести и веса тела. Решение задач

- Графически изображать вес тела и точку его приложения;

- рассчитывать силу тяжести и веса тела;

- находить связь между силой тяжести и массой тела;

- определять силу тяжести по известной массе тела, массу тела по заданной силе тяжести

27/17. Динамометр Лабораторная работа № 6

Изучение устройства динамометра. Формирование навыков измерения сил с помощью динамометра. Лабораторная работа № 6 «Градуирование пружины и измерение сил динамометром».

Демонстрации. Динамометры различных типов. Измерение мускульной силы.

- Градуировать пружину;

- получать шкалу с заданной ценой деления;

- измерять силу с помощью силомера, медицинского динамометра;

- различать вес чела и его массу, представлять результаты в виде таблиц;

- работать в группе.

28/18. Сложение двух сил, направленных по одной прямой. Равнодействующая сил

Равнодействующая сил. Сложение двух сил, направленных по одной прямой. Сложение двух сил, направленных по одной прямой в разные стороны. Графическое изображение равнодействующей двух сил. Решение задач.

Опыты. Сложение сил, направленных вдоль одной прямой. Измерение сил взаимодействия двух тел

- Экспериментально находить

равнодействующую двух сил;

- анализировать результаты опытов по нахождению равнодействующей сил и делать выводы

- рассчитывать равнодействующую двух сил

29/19. Сила трения. Трение покоя

Сила трения. Измерение силы трения скольжения. Сравнение силы трения скольжения с силой трения качения. Сравнение силы трения с весом тела. Трение покоя.

Демонстрации. Измерение силы трения при движении бруска по горизонтальной поверхности. Сравнение силы трения скольжения и с силой трения качения. Подшипники.

- Измерять силу трения скольжения;

- называть способы увеличения и уменьшения силы трения;

- применять, знания о видах трения и способах его изменения на практике, объяснять явления, происходящие из-за наличия силы трения анализировать их и делать выводы

30/20. Трение в природе и технике Лабораторная работа № 7

Роль трения в технике. Способы увеличения и уменьшения трения.

Лабораторная работа № 7 «Измерение силы трения с помощью динамометра»

- Объяснять влияние силы трения в быту и технике;

- приводить примеры различных видов трения;

- анализировать, делать выводы.

Измерять силу трения с помощью динамометра.

31/21. Решение задач

Решение задач по теме «Силы», «Равнодействующая сил»

- Применять знания из курса математики, физики, географии. Биологии к решению задач.

Отработать навыки устного счета.

Переводить единицы измерения.

32/22. Контрольная работа

Контрольная работа по теме «Вес», «Графическое изображение сил», «Виды сил», «Равнодействующая сил»

Применять знания к решению задач

33/23.

ЗАЧЕТ по теме «Взаимодействие тел»

Давление твердых тел, жидкостей и газов (21 ч)

34/1. Давление. Единицы давления

Давление. Способы нахождения давления. Единицы его измерения. Решение задач.

Демонстрации. Зависимость давления от действующей силы и площади опоры. Разрезание куска пластилина тонкой проволокой.

35/2. Способы уменьшения и увеличения давления

Выяснение способов изменения давления в быту и технике.

- Приводить примеры из практики по увеличению площади опоры для уменьшения давления;

- выполнять исследовательский эксперимент по изменению давления, анализировать его и делать выводы

36/3. Давление газа

Причины возникновения давления газа. Зависимость давления газа данной массы от объема и температуры.

Демонстрации. Давление газа на стенки сосуда

- Отличать газы по их свойствам от твердых тел и жидкостей;

объяснять давление газа на стенки сосуда на основе теории строения вещества;

- анализировать результаты эксперимента по изучению давления газа, делать выводы

37/4. Передача давления жидкостями и газами. Закон Паскаля

Различия между твердыми телами, жидкостями и газами. Передача давления жидкостью и газом. Закон Паскаля.

Демонстрации. Шар Паскаля.

- Объяснять причину передачи давления жидкостью или газом во все стороны одинаково.

- анализировать опыт по передаче давления жидкостью и объяснять его результаты

38/5. Давление в жидкости и газе. Расчет давления жидкости на дно и стенки сосуда

Наличие давления внутри жидкости. Увеличение давления с глубиной погружения. Решение задач.

Демонстрации. Давление внутри жидкости. Опыт с телами, различной плотности, погруженными в воду.

- Выводить формулу для расчета давления жидкости на дно и стенки сосуда;

- работать с текстом параграфа учебника,

- составлять план проведение опытов

39/6. Решение задач

Решение задач. Самостоятельная работа (или кратковременная контрольная работа) по теме « Давление в жидкости и газе. Закон Паскаля»

Отработка навыков устного счета,

- Решение задач на расчет давления жидкости на дно сосуда

40/7. Сообщающиеся сосуды

Расположение в сообщающихся сосудах жидкости с одинаковой плотностью. Изменение уровня в сообщающихся сосудах жидкостей разной плотности. Устройство и действие шлюза.

Демонстрации. Установление уровня жидкости в сообщающихся сосудах с одинаковой плотностью жидкости, жидкостями различной плотности

- Приводить примеры сообщающихся сосудов в быту;

- проводить исследовательский эксперимент с сообщающимися сосудами, анализировать результаты, делать выводы

41/8. Вес воздуха. Атмосферное давление

Атмосферное давление. Влияние атмосферного давления на живые организмы. Явления, подтверждающие существование атмосферного давления.

Демонстрации. Определение массы воздуха

- Вычислять массу воздуха;

- сравнивать атмосферное давление на различных высотах от поверхности Земли;

- объяснять влияние атмосферного давления на живые организмы; проводить опыты по обнаружению атмосферного давления, изменению атмосферного давления с высотой, анализировать их результаты и делать выводы.

Применять знания, из курса географии: при объяснении зависимости давления от высоты над уровнем моря, математики для расчета давления.

42/9. Измерение атмосферного давления. Опыт Торричелли

Определение атмосферного давления. Физическое содержание опыта Торричелли. Расчет силы, с которой атмосфера давит на окружающие предметы. Решение задач.

Опыты. Измерение атмосферного давления. Опыт с магдебургскими полушариями

- Вычислять атмосферное давление;

- объяснять измерение атмосферного давления с помощью трубки Торричелли;

- наблюдать опыты по измерению атмосферного давления и делать выводы

43/10. Барометр-анероид. Атмосферное давление на различных высотах

Знакомство с работой и устройством барометра-анероида. Использование его при метеорологических наблюдениях. Атмосферное давление на различных высотах Решение задач.

Демонстрации. Измерение атмосферного давления барометром-анероидом. Изменение показаний барометра, помещенного под колокол воздушного насоса

- Измерять атмосферное давление с помощью барометра-анероида;

- Объяснять изменение атмосферного давления по мере увеличения высоты над уровнем моря;

- применять знания из курса географии, биологии

44/11. Манометры. Поршневой жидкостный насос

Устройство и принцип действия открытого жидкостного и металлического манометров.

Кратковременная контрольная работа «Давление в жидкости и газе».

Демонстрации. Устройство и принцип действия открытого жидкостного манометра, металлического манометра

- Измерять давление с помощью манометра;

- различать манометры по целям использования;

- определять давление с помощью манометра;

45/12. Поршневой жидкостный насос Гидравлический пресс

Принцип действия поршневого насоса и гидравлического пресса. Физические основы работы гидравлического пресса. Решение качественных задач.

Демонстрации. Действие модели гидравлического пресса, схема гидравлического пресса

- Приводить примеры из практики применения поршневого насоса и гидравлического пресса;

- работать с текстом параграфа учебника,

46/13. Действие жидкости и газа на погруженное в них тело

Причины возникновения выталкивающей силы. Природа выталкивающей силы.

Демонстрации. Действие жидкости на погруженное в нее тело. Обнаружение силы, выталкивающей тело из жидкости и газа

- Доказывать, основываясь на законе Паскаля, существование выталкивающей силы, действующей на тело;

- приводить примеры из жизни, подтверждающие существование выталкивающей силы;

- применять знания о причинах возникновения выталкивающей силы на практике

47/14. Закон Архимеда

Содержание закона Архимеда. Плавание тел. Решение задач.

Демонстрации. Опыт с ведерком Архимеда

- Выводить формулу для определения выталкивающей силы;

- рассчитывать силу Архимеда;

- указывать причины, от которых зависит сила Архимеда;

- работать с текстом, обобщать и делать выводы, анализировать опыты с ведерком Архимеда.

48/15. Лабораторная работа № 8

Лабораторная работа № 8 «Определение выталкивающей силы, действующей на погруженное в жидкость тело»

- Опытным путем обнаруживать выталкивающее действие жидкости на погруженное в нее тело;

- определять выталкивающую силу;

работать в группе.

49/16. Плавание тел

Условия плавания тел. Зависимость глубины погружения тела в жидкость от его плотности.

Демонстрации. Плавание в жидкости тел различных плотностей.

- Объяснять причины плавания тел;

- приводить примеры плавания различных тел и живых организмов;

- конструировать прибор для демонстрации гидростатического явления;

- применять знания из курса биологии, географии, природоведения при объяснении плавания тел

50/17. Решение задач

Решение задач по теме «Архимедова сила», «Условия плавания тел»

- Рассчитывать силу Архимеда

- Анализировать результаты, полученные при решении задач

51/18. Лабораторная работа № 9

Лабораторная работа № 9 «Выяснение условий плавание тела в жидкости»

- На опыте выяснить условия, при которых тело плавает, всплывает, тонет в жидкости;

- работать в группе.

52/19. Плавание судов.

Воздухоплавание

Физические основы плавания судов и воздухоплавания. Водный и воздушный транспорт. Решение задач.

Демонстрации. Плавание кораблика из фольги. Изменение осадки кораблика при увеличении груза в нем

- Объяснять условия плавания судов;

- Приводить примеры из жизни плавания и воздухоплавания;

- объяснять изменение осадки судна;

Применять на практике знания условий плавания судов и воздухоплавания.

53/20.

Решение задач по темам: «Архимедова сила», «Плавание тел», «Воздухоплавание»

- Применять знания из курса математики, географии при решении задач.

54/21.

Зачет по теме «Давление твердых тел, жидкостей и газов»

Работа и мощность. Энергия (16 ч)

55/1. Механическая работа. Единицы работы

Механическая работа, ее физический смысл. Единицы измерения работы. Решение задач.

Демонстрации. Равномерное движение бруска по горизонтальной поверхности.

- Вычислять механическую работу;

- определять условия, необходимые для совершения механической работы

56/2. Мощность. Единицы мощности

Мощность - характеристика скорости выполнения работы. Единицы мощности. Анализ табличных данных. Решение задач.

Демонстрации. Определение мощности, развиваемой учеником при ходьбе

- Вычислять мощность по известной работе;

- приводить примеры единиц мощности различных технических приборов и механизмов;

- анализировать мощности различных приборов;

- выражать мощность в различных единицах;

- проводить самостоятельно исследования мощности технических устройств, делать выводы

57/3. Простые механизмы. Рычаг. Равновесие сил на рычаге

Простые механизмы. Рычаг. Условия равновесия рычага. Решение задач.

Опыты. Исследование условий равновесия рычага

- Применять условия равновесия рычага в практических целях: поднятии и перемещении груза;

- определять плечо силы;

- решать графические задачи

58/4. Момент силы

Момент силы - физическая величина, характеризующая действие силы. Правило моментов. Единица момента силы. Решение качественных задач.

Демонстрации. Условия равновесия рычага

- Приводить примеры, иллюстрирующие как момент силы характеризует действие силы, зависящее и от модуля силы, и от ее плеча;

- работать с текстом параграфа учебника, обобщать и делать выводы об условии равновесия тел.

59/5. Рычаги в технике, быту и природе Лабораторная работа № 10

Устройство и действие рычажных весов. Лабораторная работа № 10 « Выяснение условий равновесия рычага»

- Проверить опытным путем, при каком соотношении сил и их плеч рычаг находится в равновесии;

- проверять на опыте правило моментов;

- применять практические знания при выяснении условий равновесия рычага, знания из курса биологии, математики, технологии.

Работать в группе.

60/6. Блоки. «Золотое правило» механики

Подвижный и неподвижный блоки - простые механизмы. Равенство работ при использовании простых механизмов. Суть «золотого правила» механики. Решение задач.

Демонстрации. Подвижный и неподвижный блок

- Приводить примеры применения неподвижного и подвижного блоков на практике;

- сравнивать действие подвижного и неподвижного блоков;

- работать с текстом параграфа учебника, анализировать опыты с подвижным и неподвижным блоками и делать выводы

61/7. Решение задач

Решение задач по теме «Равновесие рычага», «Момент силы»

Применять навыки устного счета, знания из курса математики, биологии: при решении качественных и количественных задач.

Анализировать результаты, полученные при решении задач

62/8. Центр тяжести тела

Центр тяжести тела. Центр тяжести различных твердых тел.

Опыты. Нахождение центра тяжести плоского тела

- Находить центр тяжести плоского тела;

- работать с текстом;

- анализировать результаты опытов по нахождению центра тяжести плоского тела и делать выводы

63/9. Условия равновесия тел

Статика - раздел механики, изучающий условия равновесия тел. Условия равновесия тел.

Демонстрации. Устойчивое, неустойчивое и безразличное равновесия тел

- Устанавливать вид равновесия по изменению положения центра тяжести тела;

- приводить примеры различных видов равновесия, встречающихся в быту;

- работать с текстом,

- применять на практике знания об условии равновесия тел.

64/10. Коэффициент полезного действия механизмов Лабораторная работа № 11

Понятие о полезной и полной работе. КПД - основная характеристика рабочего механизма. Наклонная плоскость. Определение ее КПД. Лабораторная работа № 11 «Определение КПД при подъеме тела по наклонной плоскости»

- Опытным путем установить, что полезная работа, выполненная с помощью простого механизма, меньше полной;

- анализировать КПД различных механизмов;

- работать в группе

66/11. Энергия. Потенциальная и кинетическая энергия

Энергия - способность тела совершать работу. Зависимость потенциальной энергии тела, поднятого над землей, от его массы и высоты подъема. Зависимость кинетической энергии от массы тела и его скорости. Решение задач

- Приводить примеры тел, обладающих потенциальной, кинетической энергией;

- работать с текстом параграфа учебника

67/12. Превращение одного вида механической энергии в другой

Переход одного вида механической энергии в другой. Переход энергии от одного тела к другому.

Решение задач

- Приводить примеры превращения энергии из одного вида в другой, тел обладающих одновременно и кинетической и потенциальной энергией;

- работать с текстом

68/13

Зачет по теме «Работа. Мощность, энергия»

№ урока, тема

Содержание урока

Вид деятельности
ученика

8 класс

(70 ч, 2 ч в неделю)

Тепловые явления (13 ч)

1/1. Тепловое движение. Температура. Внутренняя энергия

Характеристика разделов курса физики 8 кл. Примеры тепловых и электрических явлений. Особенности движения молекул. Связь температуры тела и скорости движения его молекул. Движение молекул в газах, жидкостях и твердых телах. Превращение энергии тела в механических процессах. Внутренняя энергия тела.

Демонстрации. Принцип действия термометра. Наблюдение за движением частиц с использованием механической модели броуновского движения. Колебания нитяного и пружинного маятника. Падение стального и пластилинового шарика на стальную и покрытую пластилином пластину

Объяснять тепловые явления, характеризовать тепловое явление, анализировать зависимость температуры тела от скорости движения его молекул. Наблюдать и исследовать превращение энергии тела в механических процессах. Приводить примеры превращения энергии при подъеме тела, его падении. Давать определение внутренней энергии тела как суммы кинетической энергии движения его частиц и потенциальной энергии их взаимодействия

2/2. Способы изменения внутренней энергии

Увеличение внутренней энергии тела путем совершения работы над ним или ее уменьшение при совершении работы телом.

Изменение внутренней энергии путем теплопередачи.

Демонстрации. Нагревание тел при совершении работы: при ударе, при трении.

Опыт: Нагревание стальной спицы при перемещении надетой на нее пробки.

Объяснять изменение внутренней энергии тела, когда над ним совершают работу или тело совершает работу.

Перечислять способы изменения внутренней энергии.

Приводить примеры изменения внутренней энергии тела путем совершения работы и теплопередачи.

Проводить опыты по изменению внутренней энергии.

3/3. Виды теплопередачи. Теплопроводность

Теплопроводность - один из видов теплопередачи. Различие теплопроводностей различных веществ.

Демонстрации: Передача тепла от одной части твердого тела к другой. Теплопроводность различных веществ жидкостей, газов, металлов.

Объяснять тепловые явления на основе молекулярно-кинетической теории.

Приводить примеры теплопередачи путем теплопроводности. Проводить исследовательский эксперимент по теплопроводности различных веществ и делать выводы.

4/4. Излучение

Конвекция в жидкостях и газах. Объяснение конвекции. Передача энергии излучением. Конвекция, излучение - виды теплопередачи. Особенности видов теплопередачи

Демонстрации: Конвекция в воздухе и жидкости. Передача энергии путем излучения.

Приводить примеры теплопередачи путем конвекции и излучения. Анализировать, как на практике учитываются различные виды теплопередачи. Сравнивать виды теплопередачи.

5/5. Количество теплоты. Единицы количества теплоты.

Количество теплоты. Единица количества теплоты. Подготовка к выполнению лабораторной работы.

Демонстрации: Нагревание разных веществ равной массы

Опыт: Исследование изменения со временем температуры остывающей воды

Находить связь между единицами, в которых выражают количество теплоты Дж, кДж, кал, ккал. Самостоятельно работать с текстом учебника.

6/6. Удельная теплоемкость

Удельная теплоемкость вещества, ее физический смысл, Единица удельной теплоемкости Дж/кг х град и что это означает. Анализ таблицы 1 учебника. Измерение теплоемкости твердого тела.

Объяснять физический смысл удельной теплоемкости веществ. Анализировать табличные данные. Приводить примеры, применения на практике знаний о различной теплоемкости веществ.

7/7. Расчет количества теплоты, необходимого для нагревания тела или выделяемого им при охлаждении

Способы расчета количества теплоты при теплообмене тел.

Рассчитывать количество теплоты, необходимое для нагревания тела или выделяемое им при охлаждении.

8/8. Лабораторная работа № 1

Устройство и применение калориметра. Сравнивание количеств теплоты при смешивании воды разной температуры.

Лабораторная работа № 1 «Сравнение количеств теплоты при смешивании воды разной температуры»

Демонстрации: Устройство калориметра

Разрабатывать план выполнения работы. Определять и сравнивать количество теплоты, отданное горячей водой и полученное холодной при теплообмене. Объяснять полученные результаты, представлять их в табличной форме, анализировать причины погрешностей.

9/9. Лабораторная работа № 2

Зависимость удельной теплоемкости вещества от его агрегатного состояния.

Лабораторная работа № 2

«Измерение удельной теплоемкости твердого тела».

Разрабатывать план выполнения работы. Определять экспериментально удельную теплоемкость вещества и сравнивать ее с табличным значением. Объяснять полученные результаты, представлять их в табличной форме, анализировать причины погрешностей.

10/10. Энергия топлива. Удельная теплота сгорания

Формирование понятий об энергии топлива, удельной теплоте сгорания топлива. Анализ таблицы 2 учебника. Расчет количества теплоты, выделяемой при сгорании топлива. Решение задач.

Демонстрации: Образцы различных видов топлива, нагревание воды при сгорании спирта или газа в горелке.

Объяснять физический смысл удельной теплоты сгорания топлива и рассчитывать ее. Приводить примеры экологически чистого топлива.

11/11. Закон сохранения и превращения энергии в механических и тепловых процессах

Физическое содержание закона сохранения и превращение энергии в механических и тепловых процессах.

Приводить примеры превращения механической энергии во внутреннюю, перехода энергии от одного тела к другому. Формулировать закон сохранения механической энергии и приводить примеры из жизни, подтверждающие этот закон.

Систематизировать и обобщать знания закона сохранения и превращения энергии на тепловые процессы.

11/11. Контрольная работа

Контрольная работа по теме «Тепловые явления»

Применять теоретические знания к решению задач

Изменение агрегатных состояний вещества (11 ч)

13/1. Агрегатные состояния вещества Плавление и отвердевание.

Агрегатные состояния вещества. Кристаллические тела. Плавление и отвердевание. Анализ, таблицы 3 учебника.

Демонстрации. Модель

кристаллической решетки, молекул воды и кислорода, модель хаотического движения молекул в газе, кристаллы.

Опыт. Наблюдение за таянием кусочка льда в воде

Приводить примеры агрегатных состояний вещества. Отличать агрегатные состояния вещества и объяснять особенности молекулярного строения газов, жидкостей и твердых тел. Использовать межпредметные связи физики и химии для объяснения агрегатного состояния вещества. Отличать процессы плавления тела от кристаллизации и приводить примеры этих процессов.

14/2. График плавления и отвердевания кристаллических тел. Удельная теплота плавления.

Физический смысл удельной теплоты плавления, ее единица. Объяснение процессов плавления и отвердевания на основе знаний о молекулярном строении вещества. Анализ таблицы 4 учебника. Решение задач на нахождение количества теплоты, выделяющейся при кристаллизации тела

Проводить исследовательский эксперимент по изучению удельной теплоты плавления, делать отчет и объяснять результаты эксперимента. Анализировать табличные данные температуры плавления, график плавления и отвердевания. Рассчитывать количество теплоты, выделившееся при кристаллизации. Объяснять процессы плавления и отвердевания тела на основе молекулярно-кинетических представлений.

15/3. Решение задач

Решение задач по теме «Нагревание тел. Плавление и кристаллизация». Кратковременная контрольная работа « Нагревание и плавление тел»

Определять по формуле количество теплоты, выделяющееся при плавлении и кристаллизации тела.

Получать необходимые данные из таблиц. Применять теоретические знания при решении задач.

16/4. Испарение. Насыщенный и ненасыщенный пар. Конденсация. Поглощение энергии при испарении жидкости и выделении ее при конденсации пара

Особенности процессов испарения и конденсации. Поглощение энергии при испарении жидкости и выделение при конденсации пара.

Демонстрации: Явление испарения и конденсации.

Объяснять понижение температуры жидкости при испарении. Приводить примеры явлений природы, которые объясняются конденсацией пара.

Выполнять исследовательское задание по изучению испарения и конденсации, анализировать его результаты и делать выводы.

17/5. Кипение Удельная теплота парообразования и конденсации

Процесс кипения. Постоянство температуры при кипении в открытом сосуде. Физический смысл удельной теплоты парообразования и конденсации. Анализ таблицы 6 учебника. Решение задач.

Демонстрации: Кипение воды Конденсация

пара.

Работать с таблицей 6 учебника.

Приводить примеры, использования энергии, выделяемой при конденсации водяного пара. Рассчитывать количество теплоты, необходимое для превращения в пар жидкости любой массы. Самостоятельно проводить эксперимент по изучению кипения воды, анализировать его результаты, делать выводы.

18/6. Решение задач

Решение задач на расчет удельной теплоты парообразования, количества теплоты, отданного (полученного) телом при конденсации (парообразовании).

Находить в таблице необходимые данные. Рассчитывать количество теплоты, полученное (отданное) телом, удельную теплоту парообразования

19/7. Влажность

воздуха. Способы

определения

влажности воздуха

Лабораторная работа № 3

Влажность воздуха. Точка росы. Способы определения влажности воздуха. Лабораторная работа № 3 « Измерение влажности воздуха»

Демонстрации: Различные виды гигрометров, психрометров, психрометрическая таблица.

Приводить примеры влияния влажности воздуха в быту и деятельности человека.

Определять влажность воздуха.

Работать в группе.

20/8. Работа газа и пара при расширении. Двигатель внутреннего сгорания

Работа газа и пара при расширении. Тепловые двигатели. Применение закона сохранения и превращения энергии в тепловых двигателях. Экологические проблемы при использовании двигателя внутреннего сгорания (ДВС).

Демонстрации: Подъем воды за поршнем в стеклянной трубке, модель ДВС

Объяснять принцип работы и устройство ДВС, применение ДВС на практике.

21/9. Паровая турбина. КПД теплового двигателя

Устройство и принцип действия

паровой турбины. КПД

теплового двигателя. Решение задач.

Демонстрации: Модель паровой турбины

Рассказывать о применении паровой турбины в технике. Объяснять устройство и принцип работы паровой турбины.

Сравнивать КПД различных машин и механизмов.

22/10. Контрольная работа

Контрольная работа по теме «Агрегатные состояния вещества»

Применение теоретических знаний к решению задач

23/11

Зачет по теме «Тепловые явления»

Электрические явления (29 ч)

24/1. Электризация тел при соприкосновении. Взаимодействие заряженных тел

Электризация тел. Два рода зарядов. Взаимодействие заряженных тел.

Демонстрации: Электризация тел. Два рода зарядов.

Опыт: Наблюдение электризации тел при соприкосновении

Объяснять взаимодействие заряженных тел и существование двух родов заряда.

25/2. Электроскоп. Электрическое поле

Устройство электроскопа.

Формирование представлений

об электрическом поле и его

свойствах. Поле как особый вид

материи.

Демонстрации: Устройство и

действие электроскопа.

Электрометр.

Опыт: Действие электрического поля. Обнаружение поля заряженного

шара.

Обнаруживать наэлектризованные тела, электрическое поле. Пользоваться электроскопом. Определять изменение силы, действующей на заряженное тело при удалении и приближении его к заряженному телу.

26/3. Делимость электрического заряда. Электрон. Строение атома

Делимость электрического заряда. Электрон - частица с наименьшим электрическим зарядом. Единица электрического заряда.

Строение атома. Строение ядра атома. Нейтроны. Протоны.

Строение атомов водорода, гелия, лития.

Демонстрации: Таблицы со схемой опыта Резерфорда и планетарная модель атома.

Периодическая таблица Д. И. Менделеева.

Опыт: Делимость электрического заряда. Перенос заряда с заряженного электроскопа на незаряженный с помощью пробного шарика.

Объяснять опыт Иоффе -Милликена. Доказывать существование частиц, имеющих наименьший электрический заряд. Объяснять образование положительных и отрицательных ионов. Применять межпредметные связи химии и физики для объяснения строения атома.

27/4. Объяснение электрических явлений

Объяснение на основе знаний о строении атома электризации тел при соприкосновении, передаче части электрического заряда от одного тела к другому. Закон сохранения электрического заряда.

Демонстрации: Электризация двух электроскопов в электрическом поле заряженного тела.

Опыты: Зарядка электроскопа с помощью металлического стержня. Передача заряда от заряженной палочки к незаряженной гильзе.

Объяснять электризацию тел при соприкосновении.

Устанавливать зависимость заряда при переходе его с наэлектризованного тела на ненаэлектризованное при соприкосновении. Формулировать закон сохранения электрического заряда.

28/5. Проводники, полупроводники и непроводники электричества

Деление веществ по способности проводить электрический ток на проводники, полупроводники и диэлектрики. Характерная особенность полупроводников.

Демонстрации: Проводники и непроводники электричества. Полупроводниковый диод.

Опыты: Проводники и диэлектрики в электрическом поле. Работа полупроводникового диода.

На основе знаний строения атома объяснять существование проводников, полупроводников и диэлектриков. Приводить примеры применения проводников, полупроводников и диэлектриков в технике, практического применения полупроводникового диода. Наблюдать и исследовать работу полупроводникового диода.

29/6. Электрический ток. Источники электрического тока

Физическая природа электрического тока. Закрепление представлений о возникновении и существовании электрического тока. Источники электрического тока. Кратковременная контрольная работа по теме «Электризация тел. Строение атома»

Демонстрации: Электрофорная машина. Превращение внутренней энергии в электрическую. Действие электрического тока в проводнике на магнитную стрелку. Превращение энергии излучения в электрическую энергию. Гальванический элемент. Аккумуляторы, фотоэлементы.

Опыт: Изготовление гальванического элемента».

Объяснять устройство сухого гальванического элемента.

Приводить примеры источников электрического тока, объяснять их назначение.

30/7. Электрическая цепь и ее составные части.

Электрическая цепь и ее составные части. Условные обозначения, применяемые на схемах электрических цепей.

Демонстрации: Составление простейшей электрической цепи.

Собирать электрическую цепь. Объяснять особенности электрического тока в металлах, назначение источника тока в электрической цепи. Различать замкнутую и разомкнутую электрические цепи. Работать с текстом учебника.

31/8. Электрический ток в металлах. Действия электрического тока.

Направление электрического тока

Природа электрического тока в металлах. Скорость распространения электрического тока в проводнике. Действие электрического тока. Превращение энергии электрического тока в другие виды энергии. Направление электрического тока.

Демонстрации:

Модель кристаллической решетки металла.

Тепловое, химическое, магнитное действия тока.

Гальванометр.

Опыт: Взаимодействие проводника с током и магнитом.

Приводить примеры химического и теплового действия электрического тока и их использования в технике.

Показывать магнитное действие тока.

32/9. Сила тока. Единицы силы тока

Сила тока. Интенсивность действия электрического тока. Формула определения силы тока. Единицы силы тока. Решение задач.

Демонстрации: Взаимодействие параллельных проводников при замыкании цепи.

Определять направление силы тока.

Рассчитывать по формуле силу тока, выражать в различных единицах силу тока.

33/10. Амперметр. Измерение силы тока. Лабораторная работа 4

Включение амперметра в цепь. Определение цены деления его шкалы. Измерение силы тока на различных ее участках. Лабораторная работа 4 «Сборка электрической цепи и измерение силы тока в ее различных участках» Демонстрации: Амперметр. Опыт: Измерение силы тока на различных участках цепи.

Включать амперметр в цепь. Определять силу тока на различных участках цепи. Определять цену деления амперметра и гальванометра. Чертить схемы электрической цепи.

34/11. Электрическое напряжение. Единицы напряжения

Напряжение, единица напряжения. Формула для определения напряжения. Анализ таблицы 7 учебника. Решение задач.

Демонстрации:

Сборка цепи с лампочкой от фонаря и осветительной сети.

Опыт: Измерение силы тока в двух разных цепях.

Выражать напряжение в кВ, мВ.

Анализировать табличные данные.

Рассчитывать напряжение по формуле

35/12. Вольтметр, Измерение напряжения. Зависимость силы тока от напряжения

Измерение напряжения вольтметром. Подключение вольтметра в цепь. Определение цены деления его шкалы. Измерение напряжения на различных участках цепи и на источнике тока. Решение задач.

Демонстрации: Измерение напряжения с помощью вольтметра.

Опыт: Подключение вольтметра и амперметра в цепь, к источнику тока.

Определять цену деления вольтметра, подключать его в цепь, измерять напряжение.

Чертить схемы электрической цепи.

36/13. Электрическое сопротивление проводников. Единицы сопротивления Лабораторная работа 5

Определение опытным путем зависимости силы тока от напряжения. Природа электрического сопротивления на основе электронной теории строения атома.

Лабораторная работа 5 «Измерение напряжения на различных участках электрической цепи»

Демонстрации: Электрический ток в различных металлических проводниках.

Опыт: Зависимость силы тока от свойств проводников.

Строить график зависимости силы тока от напряжения. Объяснять причину возникновения сопротивления. Анализировать результаты опытов и графики. Собирать электрическую цепь, пользоваться амперметром и вольтметром. Разрабатывать план выполнения работы, делать выводы

37/14. Закон Ома для участка цепи

Установление на опыте зависимости силы тока от сопротивления. Закон Ома. Решение задач.

Опыт: Зависимость силы тока от сопротивления проводника при постоянном напряжении, зависимость силы тока от напряжения при постоянном сопротивлении на участке цепи.

Устанавливать зависимость силы тока в проводнике от сопротивления этого проводника. Записывать закон Ома в виде формулы. Использовать межпредметные связи физики и математики для решения задач на закон Ома. Анализировать табличные данные.

38/15. Расчет сопротивления проводника. Удельное сопротивление

Соотношение между сопротивлением проводника, его длиной и площадью поперечного сечения. Удельное сопротивление. Анализ таблицы 8 учебника. Решение задач.

Опыт: Зависимость сопротивления проводника от его размеров и рода вещества.

Устанавливать соотношение между сопротивлением проводника, его длиной и площадью поперечного сечения. Определять удельное сопротивление проводника

39/16. Примеры на расчет сопротивления проводника, силы тока и напряжения

Решение задач.

Чертить схемы электрической цепи с включенным в цепь реостатом. Рассчитывать электрическое сопротивление.

40/17. Реостаты Лабораторная работа № 6

Принцип действия и назначение реостата. Подключение в цепь. Регулирование силы тока реостатом и измерение сопротивления проводника при помощи амперметра и вольтметра.

Лабораторная работа № 6 «Регулирование силы тока реостатом»

Демонстрации: Устройство и принцип действия реостата, различные виды реостатов: ползунковый, штепсельный, магазин сопротивлений. Изменение силы тока в цепи с помощью реостата.

Пользоваться реостатом для регулировки силы тока в цепи. Собирать электрическую цепь. Измерять силу тока с помощью амперметра, напряжение, с помощью вольтметра.

41/18. Лабораторная работа № 7

Регулирование силы тока реостатом и измерение сопротивления проводника при помощи амперметра и вольтметра.

Лабораторная работа № 7 «Измерение сопротивления проводника при помощи амперметра и вольтметра»

Собирать электрическую цепь. Измерять сопротивление проводника при помощи амперметра и вольтметра.

42/19. Последовательное соединение проводников

Сопротивление последовательно соединенных проводников. Сила тока, в последовательно соединенных участках цепи. Полное напряжение в цепи при последовательном соединении. Решение задач.

Демонстрации: Цепь с последовательно соединенными лампочками, постоянство силы тока на различных участках цепи, полное напряжение в цепи с последовательно соединенными проводниками.

Рассчитывать силу тока, напряжение и сопротивление при последовательном соединении проводников.

43/20. Параллельное соединение проводников

Сопротивление двух параллельно соединенных проводников. Изменение общего сопротивления цепи при параллельном соединении проводников. Сила тока, напряжение в цепи при параллельном соединении. Решение задач.

Демонстрации: Цепь с параллельно включенными лампочками, измерение напряжения в проводниках при параллельном соединении.

Рассчитывать силу тока, напряжение и сопротивление при параллельном соединении.

44/21. Решение задач

Соединение проводников. Закон Ома.

Рассчитывать силу тока, напряжение, сопротивление при параллельном и последовательном соединении проводников. Применять знания, полученные при изучении теоретического материала

45/22. Контрольная работа

по теме «Электрический ток. Напряжение. Сопротивление Соединение проводников».

46/23. Работа и мощность электрического тока

Работа электрического тока. Формула ее расчета. Единицы работы электрического тока. Мощность электрического тока. Формула ее расчета. Единицы мощности электрического тока. Анализ таблицы 9 учебника. Приборы для определения мощности тока. Решение задач. Демонстрации: Измерение мощности тока в лабораторной электроплитке.

Рассчитывать работу и мощность электрического тока. Выражать единицу мощности через единицы напряжения и силы тока.

47/24. Единицы работы электрического тока, применяемые на практике Лабораторная работа № 8

Измерение мощности и работы электрического тока.

Лабораторная работа № 8

«Измерение мощности и работы тока в электрической лампе»

Выражать работу тока в Вт ч.; кВт ч. Определять мощность и работу тока в лампе, используя амперметр, вольтметр, часы.

48/25. Нагревание проводников электрическим током. Закон Джоуля-Ленца

Расчет количества теплоты, выделяющейся в проводнике при работе электрического тока. Закон Джоуля-Ленца. Решение задач.

Демонстрации: Нагревание проводников из различных веществ электрическим током.

Объяснять нагревание проводников с током с позиции молекулярного строения вещества. Рассчитывать количество теплоты, выделяемое проводником с током по закону Джоуля-Ленца.

49/26. Конденсатор

Конденсатор. Электроемкость конденсатора. Работа электрического поля конденсатора. Единица электроемкости конденсатора. Решение задач.

Демонстрации: Простейший конденсатор, различные типы конденсаторов.

Опыт: зарядка конденсатора от электрофорной машины, зависимость емкости конденсатора от площади пластин, диэлектрика, расстояния между пластинами.

Объяснять для чего служат конденсаторы в технике, Объяснять способы увеличения и уменьшения емкости конденсатора. Рассчитывать электроемкость конденсатора, работу, которую совершает электрическое поле конденсатора, энергию конденсатора.

50/27. Лампа накаливания. Электрические нагревательные приборы. Короткое замыкание предохранители

Различные виды ламп, используемые в освещении. Устройство лампы накаливания. Тепловое действие тока. Электрические нагревательные приборы. Причины перегрузки цепи и короткого замыкания. Предохранители.

Демонстрации: Устройство и принцип действия лампы накаливания, светодиодных и люминесцентных ламп, электронагревательные приборы, виды предохранителей.

Различать по принципу действия лампы, используемые для освещения, предохранители в современных приборах.

51/28. Контрольная работа

Контрольная работа по теме «Работа. Мощность. Закон Джоуля-Ленца. Конденсатор»

52/29. Зачет

По теме «Электрические явления»

Подготовить презентации: «История развития электрического освещения», «Использование теплового действия электрического тока в устройстве теплиц и инкубаторов», «История создания конденсатора», «Применение аккумуляторов» Изготовить лейденскую банку.

Электромагнитные явления (5 ч)

53/1. Магнитное поле. Магнитное поле прямого тока. Магнитные линии

Представление о магнитном поле. Установление связи между электрическим током и магнитным полем. Опыт Эрстеда.

Демонстрации: Картина магнитного поля проводника с током, расположение магнитных стрелок вокруг проводника с током.

Опыт: Взаимодействие проводника с током и магнитной стрелки

Выявлять связь между электрическим током и магнитным полем. Показывать связь направления магнитных линий с направлением тока с помощью магнитных стрелок. Приводить примеры магнитных явлений.

54/2. Магнитное поле катушки с током. Электромагниты и их применение. Лабораторная работа № 9

Магнитное поле. Магнитное поле прямого тока. Магнитные линии. Испытание действия электромагнита.

Лабораторная работа № 9

«Сборка электромагнита и испытание его действия»

Демонстрации: Показ видеофильма «Электромагниты и их применение ».

Опыты: Действие магнитного поля катушки, действие магнитного поля катушки с железным сердечником.

Перечислять способы усиления магнитного действия катушки с током.

Приводить примеры использования электромагнитов в технике и быту.

55/3. Постоянные магниты. Магнитное поле постоянных магнитов. Магнитное поле Земли

Постоянные магниты. Взаимодействие магнитов. Объяснение причин ориентации железных опилок в магнитном поле. Магнитное поле Земли. Решение задач.

Демонстрации: Типы постоянных магнитов. Взаимодействие магнитных стрелок, картина магнитного поля магнитов, устройство компаса, магнитные линии магнитного поля Земли.

Опыт: Намагничивание вещества.

Объяснять возникновение магнитных бурь, намагничивание железа.

Получать картину магнитного поля дугообразного магнита. Описывать опыты по намагничиванию веществ.

56/4. Действие магнитного поля на проводник с током. Электрический двигатель

Лабораторная работа № 10

Действие магнитного поля на проводник с током. Устройство и принцип действия электродвигателя постоянного тока.

Лабораторная работа № 10

«Изучение электрического двигателя постоянного тока (на модели)

Опыт: Действие магнитного поля на проводник током. Вращение рамки с током в магнитном поле.

Объяснять принцип действия электродвигателя и области его применения.

Перечислять преимущества электродвигателей в сравнении с тепловыми.

Ознакомиться с историей изобретения электродвигателя. Собирать электрический двигатель постоянного тока (на модели).

Определять основные детали электрического двигателя постоянного тока (подвижные и неподвижные его части): якорь, индуктор, щетки, вогнутые пластины.

57/5. Контрольная работа

По теме «Электромагнитные явления»

Световые явления (12 ч)

58/1. Источники света. Распространение света

Естественные и искусственные источники света. Прямолинейное распространение света. Закон прямолинейного распространения света. Понятие луча и пучка света. Образование тени и полутени.

Демонстрации: Излучение света различными источниками, прямолинейное распространение света, получение тени и полутени. Показ видеофильма «Солнечные и лунные затмения»

Формулировать закон прямолинейного распространения света. Объяснять образование тени и полутени. Проводить исследовательский эксперимент по получению тени и полутени.

59/2. Видимое движение светил

Видимое движение светил. Движение Солнца по эклиптике. Зодиакальные созвездия. Фазы Луны. Петлеобразное движение планет.

Демонстрации: Показ видеофильма « Движение Земли вокруг Солнца», «Фазы Луны». Определение планет на небе с помощью астрономического календаря.

Находить Полярную звезду созвездия Большой Медведицы. Используя подвижную карту звездного неба определять положение планет.

60/3. Отражение света. Закон отражения света

Явление, наблюдаемое при падении луча света на границу раздела двух сред. Отражение света. Закон отражения света. Обратимость световых лучей.

Демонстрации: Прибор для наблюдения изменения угла падения света.

Опыт: Отражение света от зеркальной поверхности. Исследование зависимости угла отражения от угла падения.

Формулировать закон отражения света.

Проводить исследовательский эксперимент по изучению зависимости угла отражения от угла падения.

61/4. Плоское зеркало

Построение изображений в плоском зеркале. Мнимое изображение предмета. Зеркальное и рассеянное отражение света.

Опыт: Изображение предмета в плоском зеркале.

Применять законы отражения при построении изображения в плоском зеркале. Строить изображение точки в плоском зеркале.

62/5. Преломление света. Закон преломления света

Явление преломления света. Угол падения и угол преломления луча. Закон преломления света. Показатель преломления двух сред.

Демонстрации: Преломление света. Прохождение света через плоскопараллельную пластинку, призму.

Формулировать закон преломления света. Работать с текстом учебника, проводить исследовательский эксперимент по преломлению света при переходе луча из воздуха в воду, делать выводы по результатам эксперимента.

63/6. Линзы. Оптическая сила линзы

Линзы, их физические свойства и характеристики. Фокус линзы. Фокусное расстояние. Оптическая сила линзы. Оптические приборы.

Демонстрации: Различные виды линз. Ход лучей в собирающей и рассеивающей линзах.

Различать линзы по внешнему виду. Определять, какая из двух линз с разными фокусными расстояниями дает большее увеличение. Проводить исследовательское задание по получению изображения с помощью линзы.

64/7. Изображения, даваемые линзой

Построение изображений, даваемых собирающей и рассеивающей линзами, в зависимости от расположения предмета относительно фокуса линзы. Изображения, даваемые собирающей и рассеивающей линзой. Основное свойство линз, используемое в оптических приборах

Строить изображения, даваемые линзой (рассеивающей, собирающей) для случаев: F< f > 2F; 2F< f; F< f <2F; различать какие изображения дают собирающая и рассеивающая линзы

65/8. Лабораторная работа № 11

Лабораторная работа № 11

«Получение изображений при помощи линзы»

Применять знания о свойствах линз при построении графических изображений.

Анализировать результаты, полученные при построении изображений, делать выводы.

66/9. Решение задач. Построение изображений, полученных с помощью линз

Решение задач на построение изображений, полученных с помощью собирающей и рассеивающей линз.

Применять теоретические знания при решении задач на построение изображений, даваемых линзой. Выработать навыки построения Чертежей и схем

67/10. Глаз и зрение

Строение глаза. Функции отдельных частей глаза.

Формирование изображения на сетчатке глаза.

Демонстрации: Модель глаза, показ видеофильма «Близорукость и дальнозоркость»

Объяснять восприятие изображения глазом человека. Применять межпредметные связи физики и биологии для объяснения восприятия изображения

68/11.

Контрольная работа по теме «Построение изображений даваемых линзой»

9 класс (102 часа)

№ урока, тема

Содержание урока

Вид деятельности ученика

ЗАКОНЫ ВЗАИМОДЕЙСТВИЯ И ДВИЖЕНИЯ ТЕЛ (34 ч)

1/1. Материальная точка. Система отсчета

Описание движения. Материальная точка как модель тела. Критерии замены тела материальной точкой. Поступательное движение. Система отсчета.

Демонстрации. Определение координаты (пути, траектории, скорости) материальной точки в заданной системе отсчета (по рис. 2, б учебника)

Наблюдать и описывать прямолинейное и равномерное движение тележки с капельницей; определять по ленте со следами капель вид движения тележки, пройденный ею путь и промежуток времени от начала движения до остановки; обосновывать возможность замены тележки ее моделью - материальной точкой - для описания движения

2/2. Перемещение

Вектор перемещения и необходимость его введения для определения положения движущегося тела в любой момент времени. Различие между понятиями «путь» и «перемещение».

Демонстрации. Путь и перемещение

Приводить примеры, в которых координату движущегося тела в любой момент времени можно определить, зная его начальную координату и совершенное им за данный промежуток времени перемещение, и нельзя, если вместо перемещения задан пройденный путь

3/3 - 5/5 Определение координаты движущегося тела

Векторы, их модули и проекции на выбранную ось. Нахождение координаты тела по его начальной координате и проекции вектора перемещения

Определять модули и проекции векторов на координатную ось; записывать уравнение для определения координаты движущегося тела в векторной и скалярной форме, использовать его для решения задач

6/6 - 7/7 Перемещение при прямолинейном равномерном движении

Для прямолинейного равномерного движения: определение вектора скорости, формулы для нахождения проекции и модуля вектора перемещения тела, формула для вычисления координаты движущегося тела в любой заданный момент времени, равенство модуля вектора перемещения пути и площади под графиком скорости.Демонстрации. Равномерное движение, измерение скорости тела при равномерном движении, построение графика зависимости v = v(t), вычисление по этому графику перемещения

Записывать формулы: для нахождения проекции и модуля вектора перемещения тела, для вычисления координаты движущегося тела в любой заданный момент времени; доказывать равенство модуля вектора перемещения пройденному пути и площади под графиком скорости; строить графики зависимости vx=vx(t)

8/8. Прямолинейное равноускоренное движение. Ускорение.

Мгновенная скорость. Равноускоренное движение. Ускорение.

Демонстрации. Определение ускорения прямолинейного равноускоренного движения

Объяснять физический смысл понятий: мгновенная скорость, ускорение; приводить примеры равноускоренного движения; записывать формулу для определения ускорения в векторном виде и в виде проекций на выбранную ось;

применять формулы Рабочая программа по физике с учетом ФГОС. 7-9 классы и Рабочая программа по физике с учетом ФГОС. 7-9 классы

lля решения задач, выражать любую из входящих в них величин через остальные

9/9 - 11/11 Скорость прямолинейного равноускоренного движения. График скорости.

Формулы для определения вектора скорости и его проекции. График зависимости проекции вектора скорости от времени при равноускоренном движении для случаев, когда векторы скорости и ускорения сонаправлены; направлены в противоположные стороны.

Демонстрации. Зависимость скорости от времени при прямолинейном равноускоренном движении

Записывать формулы:

Рабочая программа по физике с учетом ФГОС. 7-9 классы , Рабочая программа по физике с учетом ФГОС. 7-9 классы , Рабочая программа по физике с учетом ФГОС. 7-9 классы

читать и строить графики зависимости Рабочая программа по физике с учетом ФГОС. 7-9 классы

решать расчетные и качественные задачи с применением указанных формул

12/12 Перемещение при прямолинейном равноускоренном движении

Вывод формулы перемещениягеометрическим путем

Решать расчетные задачи с применением формулы

Рабочая программа по физике с учетом ФГОС. 7-9 классы

приводить формулу Рабочая программа по физике с учетом ФГОС. 7-9 классы

к виду Рабочая программа по физике с учетом ФГОС. 7-9 классы

доказывать, что для прямолинейного равноускоренного движения уравнение Рабочая программа по физике с учетом ФГОС. 7-9 классы может быть преобразовано в уравнение Рабочая программа по физике с учетом ФГОС. 7-9 классы

13/13 - 14/14 Перемещение тела при прямолинейном равноускоренном движении без начальной скорости)

Закономерности, присущие прямолинейному равноускоренному движению без начальной скорости.

Демонстрации. Зависимость модуля перемещения от времени при прямолинейном равноускоренном движении с нулевой начальной скоростью (по рис. 2 или 21 учебника)

Наблюдать движение тележки с капельницей; делать выводы о характере движения тележки; вычислять модуль вектора перемещения, совершенного прямолинейно и равноускоренно движущимся телом за п-ю секунду от начала движения, по модулю перемещения, совершенного им за к-ю секунду

15/15 Лабораторная работа № 1

Определение ускорения и мгновенной скорости тела, движущегося равноускоренно. Лабораторная работа № 1 «Исследование равноускоренного движения без начальной скорости»

Пользуясь метрономом, определять промежуток времени от начала равноускоренного движения шарика до его остановки; определять ускорение движения шарика и его мгновенную скорость перед ударом о цилиндр; представлять результаты измерений и вычислений в виде таблиц и графиков; по графику определять скорость в заданный момент времени; работать в группе

16/16. Относительность движения

Самостоятельная работа № 1 (по материалу § 1 - 8)

Относительность траектории, перемещения, пути, скорости. Геоцентрическая и гелиоцентрическая системы мира. Причина смены дня и ночи на Земле (в гелиоцентрической системе).

Демонстрации. Относительность траектории, перемещения, скорости с помощью маятника.

Наблюдать и описывать движение маятника в двух системах отсчёта, одна из которых связана с землей, а другая с лентой, движущейся равномерно относительно земли: сравнивать траектории, пути, перемещения, скорости маятника в указанных системах отсчёта; приводить примеры, поясняющие относительность движения.

17/17. Инерциальные системы отсчета. Первый закон Ньютона

Причины движения с точки зрения Аристотеля и его последователей. Закон инерции. Первый закон Ньютона. Инерциальные системы отсчета. Демонстрации. Явление инерции

Наблюдать проявление инерции; приводить примеры проявления инерции; решать качественные задачи на применение первого закона Ньютона

18/18 - 20/20. Второй закон Ньютона

Второй закон Ньютона. Единица силы.

Демонстрации. Второй закон Ньютона

Записывать второй закон Ньютона в виде формулы; решать расчетные и качественные задачи на применение этого закона

21/21. Третий закон Ньютона

Третий закон Ньютона. Силы, возникающие при взаимодействии тел: а) имеют одинаковую природу; б) приложены к разным телам.

Демонстрации. Третий закон Ньютона (по рис. 22-24 учебника)

Наблюдать, описывать и объяснять опыты, иллюстрирующие справедливость третьего закона Ньютона; записывать третий закон Ньютона в виде формулы; решать расчетные и качественные задачи на применение этого закона

22/22 - 23/23. Свободное падение тел

Ускорение свободного падения. Падение тел в воздухе и разреженном пространстве.

Демонстрации. Падение тел в воздухе и разреженном пространстве (по рис. 29 учебника)

Наблюдать падение одних и тех же тел в воздухе и в разреженном пространстве; делать вывод о движении тел с одинаковым ускорением при действии на них только силы тяжести

24/24. Движение тела, брошенного вертикально вверх. Невесомость (§ 14). Лабораторная работа № 2

Уменьшение модуля вектора скорости при противоположном направлении векторов начальной скорости и ускорения свободного падения. Невесомость. Лабораторная работа № 2 «Измерение ускорения свободного падения»

Демонстрации. Невесомость (по рис. 31 учебника)

Наблюдать опыты, свидетельствующие о состоянии невесомости тел; сделать вывод об условиях, при которых тела находятся в состоянии невесомости; измерять ускорение свободного падения; работать в группе

25/25. Закон всемирного тяготения

Закон всемирного тяготения и условия его применимости. Гравитационная постоянная.

Демонстрации. Падение на землю тел, не имеющих опоры или подвеса

Записывать закон всемирного тяготения в виде математического уравнения

26/26 - 27/27. Ускорение свободного падения на Земле и других небесных телах

Формула для определения ускорения свободного падения. Зависимость ускорения свободного падения от широты места и высоты над Землей

Из закона всемирного тяготения

выводить формулу Рабочая программа по физике с учетом ФГОС. 7-9 классы

28/28. Прямолинейное и криволинейное движение. Движение тела по окружности с постоянной по модулю скоростью.

Условие криволинейности движения.Направление скорости тела при его криволинейном движении (в частности, по окружности). Центростремительное ускорение.

Демонстрации. Примеры прямолинейного и криволинейного движения: свободное падение мяча, который выронили из рук, и движение мяча, брошенного горизонтально. Направление скорости при движении по окружности (по рис. 39 учебника)

Приводить примеры прямолинейного и криволинейного движения тел; называть условия, при которых тела движутся прямолинейно или криволинейно; вычислять модуль центростремительного ускорения по формуле Рабочая программа по физике с учетом ФГОС. 7-9 классы

29/29 - 30/30. Решение задач

Решение задач по кинематике на равноускоренное и равномерное движение, законы Ньютона, движение по окружности с постоянной по модулю скоростью

Решать расчетные и качественные задачи; слушать отчет о результатах выполнения задания-проекта «Экспериментальное подтверждение справедливости условия криволинейного движения тел»; слушать доклад «Искусственные спутники Земли», задавать вопросы и принимать участие в обсуждении темы

31/31. Импульс тела. Закон сохранения импульса.

Причины введения в науку физической величины - импульс тела. Импульс тела (формулировка и математическая запись). Единица импульса. Замкнутая система тел. Изменение импульсов тел при их взаимодействии. Вывод закона сохранения импульса.

Демонстрации. Импульс тела. Закон сохранения импульса (по рис. 44 учебника)

Давать определение импульса тела, знать его единицу; объяснять, какая система тел называется замкнутой, приводить примеры замкнутой системы; записывать закон сохранения импульса

32/32. Реактивное движение. Ракеты.

Сущность и примеры реактивного движения. Назначение, конструкция и принцип действия ракеты. Многоступенчатые ракеты.

Демонстрации. Реактивное движение. Модель ракеты

Наблюдать и объяснять полет модели ракеты

33/33. Вывод закона сохранения механической энергии

Закон сохранения механической энергии.

Вывод закона и его применение к решению задач

Решать расчетные и качественные задачи на применение закона сохранения энергии; работать с заданиями, приведенными в разделе «Итоги главы»

34/34. Контрольная работа № 1

Контрольная работа по теме «Законы взаимодействия и движения тел»

Применять знания к решению задач

МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ И ВОЛНЫ. ЗВУК (16 ч)

35/1 - 36/2 Колебательное движение. Свободные колебания.

Примеры колебательного движения. Общие черты разнообразных колебаний. Динамика колебаний горизонтального пружинного маятника. Свободные колебания, колебательные системы, маятник.

Демонстрации. Примеры колебательных движений (по рис. 52 учебника). Экспериментальная задача на повторение закона Гука и измерение жесткости пружины или шнура

Определять колебательное движение по его признакам; приводить примеры колебаний; описывать динамику свободных колебаний пружинного и математического маятников; измерять жесткость пружины или резинового шнура

37/3. Величины, характеризующие колебательное движение

Амплитуда, период, частота, фаза колебаний. Зависимость периода и частоты маятника от длины его нити.

Демонстрации. Период колебаний пружинного маятника; экспериментальный

вывод зависимости Рабочая программа по физике с учетом ФГОС. 7-9 классы

Называть величины, характеризующие колебательное движение; записывать формулу взаимосвязи периода и частоты колебаний; проводить экспериментальное исследование зависимости периода колебаний пружинного маятника от т и к

38/4. Лабораторная работа № 3

Лабораторная работа № 3 «Исследование зависимости периода и частоты свободных колебаний маятника от длины его нити»

Проводить исследования зависимости периода (частоты) колебаний маятника от длины его нити; представлять результаты измерений и вычислений в виде таблиц; работать в группе; слушать отчет о результатах выполнения задания-проекта «Определение качественной зависимости периода колебаний математического маятника от ускорения свободного падения»

39/5. Затухающие колебания. Вынужденные колебания

Превращение механической энергии колебательной системы во внутреннюю. Затухающие колебания. Вынужденные колебания. Частота установившихся вынужденных колебаний.

Демонстрации. Преобразование энергии в процессе свободных колебаний. Затухание свободных колебаний. Вынужденные колебания

Объяснять причину затухания свободных колебаний; называть условие существования незатухающих колебаний

40/6. Резонанс.

Условия наступления и физическая сущность явления резонанса. Учет резонанса в практике.

Демонстрации. Резонанс маятников (по рис. 68 учебника)

Объяснять, в чем заключается явление резонанса; приводить примеры полезных и вредных проявлений резонанса и пути устранения последних

41/7 - 42/8. Распространение колебаний в среде. Волны

Механизм распространения упругих колебаний. Механические волны.Поперечные и продольные упругие волны в твердых, жидких и газообразных средах.

Демонстрации. Образование и распространение поперечных и продольных волн (по рис. 69-71 учебника)

Различать поперечные и продольные волны; описывать механизм образования волн; называть характеризующие волны физические величины

43/9 - 44/10. Длина волны. Скорость распространения волн

Характеристики волн: скорость, длина волны, частота, период колебаний. Связь между этими величинами.

Демонстрации. Длина волны (по рис. 72 учебника)

Называть величины, характеризующие упругие волны;

записывать формулы взаимосвязи между ними

45/11. Источники звука. Звуковые колебания

Источники звука - тела, колеблющиеся с частотой 16 Гц - 20 кГц. Ультразвук и инфразвук. Эхолокация.

Демонстрации. Колеблющееся тело как источник звука (по рис. 74-76 учебника)

Называть диапазон частот звуковых волн; приводить примеры источников звука; приводить обоснования того, что звук является продольной волной; слушать доклад «Ультразвук и инфразвук в природе, технике и медицине», задавать вопросы и принимать участие в обсуждении темы.

46/12. Высота, [тембр] и громкость звука.

Зависимость высоты звука от частоты, а громкости звука - от амплитуды колебаний и некоторых других причин. [Тембр звука.]

Демонстрации. Зависимость высоты тона от частоты колебаний (по рис. 79 учебника). Зависимость громкости звука от амплитуды колебаний (по рис. 76 учебника)

На основании увиденных опытов выдвигать гипотезы относительно зависимости высоты тона от частоты, а громкости - от амплитуды колебаний источника звука

47/13 - 48/14. Распространение звука. Звуковые волны.

Наличие среды - необходимое условие распространения звука. Скорость звука в различных средах.

Демонстрации. Необходимость упругой среды для передачи звуковых колебаний (по рис. 80 учебника)

Выдвигать гипотезы о зависимости скорости звука от свойств среды и от ее температуры; объяснять, почему в газах скорость звука возрастает с повышением температуры

49/15. Контрольная работа № 2

Контрольная работа по теме «Механические колебания и волны. Звук»

Применять знания к решению задач

50/16. Отражение звука. Звуковой резонанс.

Отражение звука. Эхо. Звуковой резонанс.Демонстрации. Отражение звуковых волн. Звуковой резонанс (по рис. 84 учебника)

Объяснять наблюдаемый опыт по возбуждению колебаний одного камертона звуком, испускаемым другим камертоном такой же частоты

ЭЛЕКТРОМАГНИТНОЕ ПОЛЕ (26 ч)

51/1. Магнитное поле.

Источники магнитного поля. Гипотеза Ампера. Графическое изображение магнитного поля. Линии неоднородного и однородного магнитного поля.Демонстрации. Пространственная модель магнитного поля постоянного магни-

та. Демонстрация спектров магнитного поля токов

Делать выводы о замкнутости магнитных линий и об ослаблении поля с удалением от проводников с током

52/2 - 53/3. Направление тока и направление линий его магнитного поля.

Связь направления линий магнитного поля тока с направлением тока в проводнике. Правило буравчика.Правило правой руки для соленоида

Формулировать правило правой руки для соленоида, правило буравчика; определять направление электрического тока в проводниках и направление линий магнитного поля

54/4 - 55/5. Обнаружение магнитного поля по его действию на электрический ток. Правило левой руки.

Действие магнитного поля на проводник с током и на движущуюся заряженную частицу. Правило левой руки.Демонстрации. Действие магнитного поля на проводник с током (по рис. 104 учебника)

Применять правило левой руки; определять направление силы, действующей на электрический заряд, движущийся в магнитном поле; определять знак заряда и направление движения частицы

56/6. Индукция магнитного поля. Магнитный поток.

Индукция магнитного поля. Модуль вектора магнитной индукции. Линии магнитной индукции. Единицы магнитной индукции. Зависимость магнитного потока, пронизывающего площадь контура, от площади контура, ориентации плоскости контура по отношению к линиям магнитной индукции и от модуля вектора магнитной индукции магнитного поля

Записывать формулу взаимосвязи модуля вектора магнитной индукции Вмагнитного поля с модулем силы Р, действующей на проводник длиной 1,расположенный перпендикулярно линиям магнитной индукции, и силой тока/в проводнике;

описывать зависимость магнитного потока от индукции магнитного поля,

пронизывающего площадь контура и от его ориентации по отношению к линиям магнитной индукции

57/7 - 58/8. Явление электромагнитной индукции.

Опыты Фарадея. Причина возникновения индукционного тока. Определение явления электромагнитной индукции. Техническое применение явления.Демонстрации. Электромагнитная индукция (по рис. 122-124 учебника)

Наблюдать и описывать опыты, подтверждающие появление электрического поля при изменении магнитного поля, делать выводы

59/9. Лабораторная работа № 4

Лабораторная работа № 4 «Изучение явления электромагнитной индукции»

Проводить исследовательский эксперимент по изучению явления электромагнитной индукции; анализировать результаты эксперимента и делать выводы;

работать в группе

60/10 - 61/11. Направление индукционного тока. Правило Ленца

Возникновение индукционного тока в алюминиевом кольце при изменении проходящего сквозь кольцо магнитного потока. Определение направления индукционного тока. Правило Ленца

Демонстрации. Взаимодействие алюминиевых колец (сплошного и с прорезью) с магнитом (по рис. 126-130 учебника)

Наблюдать взаимодействие алюминиевых колец с магнитом; объяснять физическую суть правила Ленца и формулировать его; применять правило Ленца и правило правой руки для определения направления индукционного тока

62/12. Явление самоиндукции.

Физическая суть явления самоиндукции. Индуктивность. Энергия магнитного поля тока.

Демонстрации. Проявление самоиндукции при замыкании и размыкании электрической цепи (по рис. 131, 132 учебника)

Наблюдать и объяснять явление самоиндукции

63/13 - 64/14. Получение и передача переменного электрического тока. Трансформатор. .

Переменный электрический ток. Электромеханический индукционный генератор (как пример - гидрогенератор). Потери энергии в ЛЭП, способы уменьшения потерь. Назначение, устройство и принцип действия трансформатора, его применение при передаче электроэнергии.

Демонстрации. Трансформатор универсальный

Рассказывать об устройстве и принципе действия генератора переменного тока; называть способы уменьшения потерь электроэнергии передаче ее на большие расстояния; рассказывать о назначении, устройстве и принципе действия трансформатора и его применении

65/15 - 67/17. Электромагнитное поле. Электромагнитные волны

Электромагнитное поле, его источник.

Различие между вихревым электрическим и электростатическим полями. Электромагнитные волны: скорость, поперечность, длина волны, причина возникновения волн. Получение и регистрация электромагнитных волн.

Самостоятельная работа № 2 (по материалу § 35-43).

Демонстрации. Излучение и прием электромагнитных волн

Наблюдать опыт по излучению и приему электромагнитных волн; описывать различия между вихревым электрическим и электростатическим полями

68/18 - 69/19. Колебательный контур. Получение электромагнитных колебаний..

Высокочастотные электромагнитные колебания и волны - необходимые средства для осуществления радиосвязи.Колебательный контур, получение электромагнитных колебаний. Формула Томсона.

Демонстрации. Регистрация свободных электрических колебаний (по рис. 140 учебника)

Наблюдать свободные электромагнитные колебания в колебательном контуре; делать выводы; решать задачи на формулу Томсона

70/20 - 71

\21. Принципы радиосвязи и телевидения .

Блок-схема передающего и приемного устройств для осуществления радиосвязи. Амплитудная модуляция и детектирование высокочастотных колебаний

Рассказывать о принципах радиосвязи и телевидения; слушать доклад «Развитие средств и способов передачи информации на далекие расстояния с древних времен и до наших дней»

73/23. Электромагнитная природа света .

Свет как частный случай электромагнитных волн. Диапазон видимого излучения на шкале электромагнитных волн. Частицы электромагнитного излучения - фотоны (кванты)

Называть различные диапазоны электромагнитных волн

74/24. Преломление света. Физический смысл показателя преломления. Дисперсия

света. Цвета тел .

Явление дисперсии. Разложение белого света в спектр. Получение белого света путем сложения спектральных цветов. Цвета тел. Назначение и устройство спектрографа и спектроскопа.

Демонстрации. Преломление светового луча (по рис. 145 учебника). Опыты по рисункам 149-153 учебника

Наблюдать разложение белого света в спектр при его прохождении сквозь призму и получение белого света путем сложения спектральных цветов с помощью линзы;

- объяснять суть и давать определение явления дисперсии

75/25. Типы оптических спектров. Лабораторная работа № 5

Сплошной и линейчатые спектры, условия их получения. Спектры испускания и поглощения. Закон Кирхгофа. Атомы - источники излучения и поглощения света.

Лабораторная работа № 5 «Наблюдение сплошного и линейчатых спектров испускания»

Наблюдать сплошной и линейчатые спектры испускания; называть условия образования сплошных и линейчатых спектров испускания; работать в группе; слушать доклад «Метод спектрального анализа и его применение в науке и технике»

76/26. Поглощение и испускание света атомами. Происхождение линейчатых спектров.

Объяснение излучения и поглощения света атомами и происхождения линейчатых спектров на основе постулатов Бора.

Самостоятельная работа № 3 (по материалам § 44-47, 49-51)

Объяснять излучение и поглощение света атомами и происхождение линейчатых спектров на основе постулатов Бора;

работать с заданиями, приведенными в разделе «Итоги главы»

СТРОЕНИЕ АТОМА И АТОМНОГО ЯДРА (19 ч)

77/1 - 78/2. Радиоактивность. Модели атомов.

Сложный состав радиоактивного излучения, α, β и γ-частицы. Модель атома Томсона. Опыты Резерфорда по рассеянию α-частиц. Планетарная модель атома

Описывать опыты Резерфорда: по обнаружению сложного состава радиоактивного излучения и по исследованию с помощью рассеяния α-частиц строения атома

79/3 - 80/4. Радиоактивные превращения атомных ядер .

Превращения ядер при радиоактивном распаде на примере α-распада радия. Обозначение ядер химических элементов. Массовое и зарядовое числа. Закон сохранения массового числа и заряда при радиоактивных превращениях

Объяснять суть законов сохранения массового числа и заряда при радиоактивных превращениях; применять эти законы при записи уравнений ядерных реакций

81/5 - 82/6. Экспериментальные методы исследования частиц Лабораторная работа № 6

Назначение, устройство и принцип действия счетчика Гейгера и камеры Вильсона.

Лабораторная работа № 6 «Измерение естественного радиационного фона дозиметром»

Измерять мощность дозы радиационного фона дозиметром;

сравнивать полученный результат с наибольшим допустимым для человека значением; работать в группе

83/7. Открытие протона и нейтрона

Выбивание α-частицами протонов из ядер атома азота. Наблюдение фотографий образовавшихся в камере Вильсона треков частиц, участвовавших в ядерной реакции. Открытие и свойства нейтрона

Применять законы сохранения массового числа и заряда для записи уравнений ядерных реакций

84/8 - 85/9. Состав атомного ядра. Ядерные силы.

Протонно-нейтронная модель ядра. Физический смысл массового и зарядового чисел. Особенности ядерных сил. Изотопы

Объяснять физический смысл понятий: массовое и зарядовое числа

86/10 - 87/11. Энергия связи. Дефект масс.

Энергия связи. Внутренняя энергия атомных ядер. Взаимосвязь массы и энергии. Дефект масс. Выделение или поглощение энергии в ядерных реакциях

Объяснять физический смысл понятий: энергия связи, дефект масс

88/12 - 89/13. Деление ядер урана. Цепная реакция. Лабораторная работа № 7

Модель процесса деления ядра урана. Выделение энергии. Условия протекания управляемой цепной реакции. Критическая масса.

Лабораторная работа № 7 «Изучение деления ядра атома урана по фотографии треков»

Описывать процесс деления ядра атома урана; объяснять физический смысл понятий: цепная реакция, критическая масса; называть условия протекания управляемой цепной реакции

90/14 - 91/15. Ядерный реактор. Преобразование внутренней энергии атомных ядер в электрическую энергию.

Атомная энергетика .

Назначение, устройство, принцип действия ядерного реактора на медленных нейтронах. Преобразование энергии ядер в электрическую энергию. Преимущества и недостатки АЭС перед другими видами электростанций. Дискуссия на тему «Экологические последствия использования тепловых, атомных и гидроэлектростанций»

Рассказывать о назначении ядерного реактора на медленных нейтронах, его устройстве и принципе действия; называть преимущества и недостатки АЭС перед другими видами электростанций

92/16 - 93/17. Биологическое действие радиации. Закон радиоактивного распада.

Физические величины: поглощенная доза излучения, коэффициент качества, эквивалентная доза. Влияние радиоактивных излучений на живые организмы. Период полураспада радиоактивных веществ. [Закон радиоактивного распада.] Способы защиты от радиации

Называть физические величины: поглощенная доза излучения, коэффициент качества, эквивалентная доза, период полураспада; слушать доклад «Негативное воздействие радиации на живые организмы и способы защиты от нее»

94/18. Термоядерная реакция. Контрольная работа № 3

Условия протекания и примеры термоядерных реакций. Выделение энергии и перспективы ее использования. Источники энергии Солнца и звезд. Контрольная работа № 3 по теме «Строение атома и атомного ядра. Использование энергии атомных ядер»

Называть условия протекания термоядерной реакции; приводить примеры термоядерных реакций; применять знания к решению задач

95/19. Решение задач. Лабораторная работа № 8. Лабораторная работа № 9

Решение задач по дозиметрии, на закон радиоактивного распада.

Лабораторная работа № 8 «Оценка периода полураспада находящихся в воздухе продуктов распада газа радона». Лабораторная работа № 9 «Изучение треков заряженных частиц по готовым фотографиям» (выполняется дома)

Строить график зависимости мощности дозы излучения продуктов распада радона от времени; оценивать по графику период полураспада продуктов распада радона; представлять результаты измерений в виде таблиц; работать в группе

СТРОЕНИЕ И ЭВОЛЮЦИЯ ВСЕЛЕННОЙ (5 ч)

96/1. Состав, строение и происхождение Солнечной системы .

Состав Солнечной системы: Солнце, восемь больших планет (шесть из которых имеют спутники), пять планет-карликов, астероиды, кометы, метеор-

ные тела. Формирование Солнечной системы.

Демонстрации. Слайды или фотографии небесных объектов

Наблюдать слайды или фотографии небесных объектов; называть группы объектов, входящих в Солнечную систему; приводить примеры изменения вида звездного неба в течение суток

97/2. Большие планеты Солнечной системы.

Земля и планеты земной группы. Общность характеристик планет земной группы. Планеты-гиганты. Спутники и кольца планет-гигантов.

Демонстрации. Фотографии или слайды Земли, планет земной группы и планет-гигантов

Сравнивать планеты земной группы; планеты-гиганты; анализировать фотографии или слайды планет

98/3. Малые тела Солнечной системы.

Малые тела Солнечной системы: астероиды, кометы, метеорные тела. Образование хвостов комет. Радиант. Метеорит. Болид.

Демонстрации. Фотографии комет, астероидов

Описывать фотографии малых тел Солнечной системы

99/4. Строение, излучение и эволюция Солнца и звезд.

Солнце и звезды: слоистая (зонная) структура, магнитное поле. Источник энергии Солнца и звезд - тепло, выделяемое при протекании в их недрах термоядерных реакций. Стадии эволюции Солнца.

Демонстрации. Фотографии солнечных пятен, солнечной короны

Объснять физические процессы, происходящие в недрах Солнца и звезд; называть причины образования пятен на Солнце; анализировать фотографии солнечной короны и образований в ней

100/5. Строение и эволюция Вселенной.

Галактики. Метагалактика. Три возможные модели нестационарной Вселенной, предложенные А. А. Фридманом. Экспериментальное подтверждение Хабблом расширения Вселенной. Закон Хаббла. Самостоятельная работа № 4 (по материалу §65-68).

Демонстрации. Фотографии или слайды галактик

Описывать три модели нестационарной Вселенной, предложенные Фридманом; объяснять, в чем проявляется нестационарность Вселенной; записывать закон Хаббла

101. Повторение

контрольная работа

(Промежуточная аттестация)

Повторение и обобщение

Контрольная работа за курс основной школы

Демонстрировать презентации, участвовать в обсуждении презентаций; работать с заданиями, приведенными в разделе «Итоги главы»

Применять знания к решению задач

102. Анализ ошибок контрольной работы

Решение задач. Анализ ошибок контрольной работы

Обсуждение и анализ ошибок, допущенных в контрольной работе;

самостоятельно оценивать качество выполнения работы

7. Описание учебно-методического и материально-технического обеспечения образовательного процесса:

Печатные учебные пособия:


  1. А.В. Перышкин «Физика 7 класс»: учебник для общеобразовательных учреждений. - М.: Дрофа, 2014

  2. А.В. Перышкин «Физика 8 класс»: учебник для общеобразовательных учреждений. - М.: Дрофа, 2012 - 2014

  3. А.В. Перышкин, Е.М. Гутник «Физика 9 класс»: учебник для общеобразовательных учреждений. - М.: Дрофа, 2012 - 2014

  4. Лукашик В.И. Сборник задач по физике для 7 - 9 классов общеобразовательных учреждений - М.: Просвещение, 2010


Электронные ресурсы (CD )


-Тематическое планирование и тематический контроль физика 7- 11 класс.

-Физика 10 приложение к учебнику

-Открытая физика (ООО Физикон, г. Долгопрудный).

-Вся физика, Серия руссобит- педагог

-Электронные уроки и тесты. Физика в школе.

• Свет. Оптические явления.

• Колебания и волны.

• Работа. Мощность. Энергия

• Гравитация. Закон сохранения энергии.

• Земля и ее место во Вселенной.

• Элементы атомной физики.

• Молекулярная структура материи.

• Внутренняя энергия.

• Движение и взаимодействие тел.

• Движение и силы

-Тестовый контроль. Физика.7-9 кл


-Физика. Мультимедийный курс.10-11 классы.

-Физика,7- 11 классы. Библиотека наглядных пособий. (1С)

-Репетитор.Физика.(1С)

-Живая физика 7-11 классы (.Ханнанова) 1,2 (1С)

-Курс Физики 21 века. Часть 1. Механика.

-Интерактивный курс физики для 7 - 9 классов. Основная школа.

-Физика, 10 -11 кл. Подготовка к ЕГЭ.

-Лабораторные работы по физике (7-9 класс)

-Видеоуроки по физике (15 дисков)


Учебно - лабораторное оборудование кабинета физики:


Название оборудования

Количество

Оптика

1

Демонстрационный набор по оптике.

1

2

Комплект лабораторный по оптике

1

3

Линза на подставке.

11

4

Лупа.

1

5

Матовые стекла.

7

6

Набор дифракционных решеток

2

7

Набор линз.

2

8

Плоскопараллельные стеклянные призмы

5

9

Генератор «Спектр»

1

10

Спектрометр

2

11

Трубки спектральные

2

12

Модель - солнечная батарея

1

13

Источник света на подставке

1

14

Стробоскоп

1

15

Экран со щелью

7

16

Прибор для измерения длины свет. волны

2

17

Универсальный набор Л.Р. «Оптика»

1

18

Реохорды

3

Механика

1

Блок

6

2

Весы электронные

1

3

Деревянные бруски

10

4

Динамометр лабораторный 0-4 Н

19

5

Желоб

4

6

Набор грузов демонстрационный

2

7

Набор грузов лабораторный.

10

8

Набор магнитов дугообразных

5

9

Набор магнитов полосовых

7

10

Набор по статике

1

11

Рычаг лабораторный

8

Электродинамика и магнетизм


1

Амперметр демонстрационный

1

2

Амперметр лабораторный

10

3

Ваттметр демонстрационный

1

4

Виток в магнитном поле Земли

1

5

Виток с током

1

6

Вольтметр демонстрационный

1

7

Вольтметр лабораторный

8

8

Генератор электрический

1

9

Источник питания универсальный

2

10

Источник питания лабораторный

8

11

Катушка индуктивности лабораторная

1

12

Электрометр

4

13

Ключ лабораторный

11

14

Компас

2

15

Конденсатор переменной емкости

1

16

Лампочки лабораторные

2

17

Магазин сопротивлений

1

18

Магнитная стрелка.

10

19

Миллиамперметр лабораторный

5

20

Модель молекулярного строения магнита

3

21

Модель радиоприемника детекторного

2

22

Модель электродвигателя

5

23

Модель электродвигателя

1

24

Набор газонаполненных трубок

1

25

Набор по электростатике

1

26

Осциллограф

1

27

Плитка электрическая

1

28

Прибор для демонстрации правила Ленца

1

29

Рамка вращения в магнитном поле Земли

1

30

Резисторы лабораторные

31

31

Реостат лабораторный

9

32

Стеклянная и эбонитовая палочки.

2

33

Султаны электрические

2

34

Термосопротивление

1

35

Трансформатор.

1

36

Трансформаторы на панелях

1

37

Электрический звонок

1

38

Электромагнит разборный

1

39

Электроскоп

2

40

Генератор высокого напряжения

1

41

Триод на подставке

1

42

Модель громкоговорителя

1

43

Модель генератора постоянного тока

1

44

Модель плоского конденсатора

1

45

Модель телеграфа

1

46

Набор радиодеталей

1

47

Набор полупроводниковых приборов

1

Газовые законы ,гидро - и аэродинамика, термодинамика

1

Барометр -анероид

3

2

Ведерко Архимеда

1

3

Весы

9

4

Гигрометр.

1

5

Камертон

2

6

Калориметры лабораторные

12

7

Магденбургские полушария

1

8

Манометр.

3

9

Набор капилляров

2

10

Модель паровой машины

1

11

Модель четырехтактного двигателя

1

12

Прибор -поверхностное натяжение

1

13

Набор тел для калориметрических работ.

1

14

Насос ручной вакуумный.

1

15

Прибор - газовые законы

1

16

Лабораторный набор -газовые законы

1

17

Прибор для демонстрации излучения

1

18

Денсиметр

1

19

Огниво воздушное

1

20

Прибор для изучения газовых законов.

1

21

Прибор для изучения теплопроводности

1

22

Психрометр и гигрометр волосяной

1

23

Прибор для демонстрации деформации

1

24

Сосуды сообщающиеся

1

25

Термометр

7

26

Термометр демонстрационный

1

27

Шар для взвешивания воздуха

2

28

Шар Паскаля

2

29

Шар с кольцом

1

Наглядные пособия (учебные плакаты)

ФИЗИКА 7 класс.


Учебный альбом из 20 листов.
Физические виличины. Измерения физических величин. Строение вещества. Молекулы. Диффузия. Взаимное притяжение и отталкивание молекул. Три состояния вещества. Различия в молекулярном строении твердых тел, жидкостей и газов. Механическое движение. Равномерное и неравномерное движение. Скорость. Единицы скорости. Расчет пути и времени движения. Инерция. Взаимодействие тел. Плотность вещества. Расет массы и объема тела по его плотности. Сила. Сила тяжести. Единицы силы. Сложение двух сил. Сила тяжести. Вес тела. Сила упругости. Закон Гука. Динамометр. Сила трения. Трение покоя. Давление. Давление газа и жидкости. Вес воздуха. Атмосферное давление. Манометр. Поршневой и жидкостный насос. Гидравлический пресс. Действие жидкости. Механическая работа. Мощность. Рычаг. Момент силы. Подвижный и неподвижный блок. Равенство работ при использовании пролстейших механизмов.

ФИЗИКА 8 класс.


Учебный альбом из 20 листов.
Внутренняя энергия. Количество теплоты. Удельная теплоемкость. Удельная теплота сгорания. Закон сохранения и превращения энергии. Плавление и отвердевание кристаллических тел. Испарение. Кипение. Удельная теплота парообразования и конденсации. Влажность воздуха. Работа газа и пара при расширении. Двигатель внутреннего сгорания. Электризация тел. Электрическое поле. Строение атомов. Электрический ток. Электрическая цепь. Электрический ток в металлах. Сила тока. Электрическое напряжение. Измерение силы тока и напряжения. Электрическое сопротивление проводников. Закон Ома для участка цепи. Удельное сопротивление проводника. Последовательное и параллельное соединение проводников. Работа электрического тока. Мощность электрического тока. Магнитное поле. Световые явления. Линзы.

ФИЗИКА 9 класс.


Учебный альбом из 20 листов.
Материальная точка. Координаты движущегося тела. Ускорение. Законы Ньтона. Закон всемирного тяготения. Прямолинейное и криволинейное движение. Движение тела по окружности. Импульс тела. Закон сохранения импульса. Свободные колебания. Величины, характеризующие колебательное движение. Гармонические колебания. Затухающие колебания. Вынужденые колебания. Резонанс. Волны. Продольные и поперечные волны. Звуковые колебания. Звуковые волны. Эхо. Интерференция звука. Магнитное поле. Направление линий магнитного поля тока. Обнаружение магнитного поля по его действию на электрический ток. Индукция магнитного поля. Линии магнитной индукции. Однородное и неоднородное магнитное поле. Магнитный поток. Явление электромагнитной индукции. Электромагнитные волны. Интерференция света. Радиоактивность. Состав атомного ядра. Изотопы. Альфа и Бета распад. Энергия связи. Дефект масс. Деление ядер урана. Цепная реакция.

ФИЗИКА 10 класс


Учебный альбом из 16 листов.
Физические величины и фундаментальные константы. Строение атома. Кинематика вращательного движения. Кинематика колебательного движения. Законы Ньютона. Работа силы. Динамика свободных колебаний. Скорость света - максимальная скорость распространения взаимодействия. Агрегатные состояния вещества. Шкала температур. Цикл Карно. Сжижение пара при его изометрическом сжатии. Кристаллические тела. Продольные волны. Напряженность электростатического поля. Диэлектрики и проводники в электростатическом поле.

ФИЗИКА 11 класс.


Учебный альбом из 15 листов.
Трансформатор. Электромагнитная индукция в современной технике. Электронные лампы. Электронно-лучевая трубка. Полупроводники. Полупроводниковый диод. Транзистор. Планетарная модель атома. Опыт Резерфорда. Цепная ядерная реакция. Ядерный реактор. Рентгеновская трубка. Передача и распределение электроэнергии. Радиолокация. Лазер. Энергетическая система. Атомная электростанция. Термо- и фоторезисторы. Простейший радиоприемник.

8.Планируемые результаты изучения учебного процесса

Механические явления

Выпускник научится:

  • распознавать механические явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: равномерное и равноускоренное прямолинейное движение, свободное падение тел, невесомость, равномерное движение по окружности, инерция, взаимодействие тел, передача давления твёрдыми телами, жидкостями и газами, атмосферное давление, плавание тел, равновесие твёрдых тел, колебательное движение, резонанс, волновое движение;

  • описывать изученные свойства тел и механические явления, используя физические величины: путь, скорость, ускорение, масса тела, плотность вещества, сила, давление, импульс тела, кинетическая энергия, потенциальная энергия, механическая работа, механическая мощность, КПД простого механизма, сила трения, амплитуда, период и частота колебаний, длина волны и скорость её распространения; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения, находить формулы, связывающие данную физическую величину с другими величинами;

  • анализировать свойства тел, механические явления и процессы, используя физические законы и принципы: закон сохранения энергии, закон всемирного тяготения, равнодействующая сила, I, II и III законы Ньютона, закон сохранения импульса, закон Гука, закон Паскаля, закон Архимеда; при этом различать словесную формулировку закона и его математическое выражение;

  • различать основные признаки изученных физических моделей: материальная точка, инерциальная система отсчёта;

  • решать задачи, используя физические законы (закон сохранения энергии, закон всемирного тяготения, принцип суперпозиции сил, I, II и III законы Ньютона, закон сохранения импульса, закон Гука, закон Паскаля, закон Архимеда) и формулы, связывающие физические величины (путь, скорость, ускорение, масса тела, плотность вещества, сила, давление, импульс тела, кинетическая энергия, потенциальная энергия, механическая работа, механическая мощность, КПД простого механизма, сила трения скольжения, амплитуда, период и частота колебаний, длина волны и скорость её распространения): на основе анализа условия задачи выделять физические величины и формулы, необходимые для её решения, и проводить расчёты.

Выпускник получит возможность научиться:

  • использовать знания о механических явлениях в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде;

  • приводить примеры практического использования физических знаний о механических явлениях и физических законах; использования возобновляемых источников энергии; экологических последствий исследования космического пространства;

  • различать границы применимости физических законов, понимать всеобщий характер фундаментальных законов (закон сохранения механической энергии, закон сохранения импульса, закон всемирного тяготения) и ограниченность использования частных законов (закон Гука, закон Архимеда и др.);

  • приёмам поиска и формулировки доказательств выдвинутых гипотез и теоретических выводов на основе эмпирически установленных фактов;

  • находить адекватную предложенной задаче физическую модель, разрешать проблему на основе имеющихся знаний по механике с использованием математического аппарата, оценивать реальность полученного значения физической величины.

Тепловые явления

Выпускник научится:

  • распознавать тепловые явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: диффузия, изменение объёма тел при нагревании (охлаждении), большая сжимаемость газов, малая сжимаемость жидкостей и твёрдых тел; тепловое равновесие, испарение, конденсация, плавление, кристаллизация, кипение, влажность воздуха, различные способы теплопередачи;

  • описывать изученные свойства тел и тепловые явления, используя физические величины: количество теплоты, внутренняя энергия, температура, удельная теплоёмкость вещества, удельная теплота плавления и парообразования, удельная теплота сгорания топлива, коэффициент полезного действия теплового двигателя; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения, находить формулы, связывающие данную физическую величину с другими величинами;

  • анализировать свойства тел, тепловые явления и процессы, используя закон сохранения энергии; различать словесную формулировку закона и его математическое выражение;

  • различать основные признаки моделей строения газов, жидкостей и твёрдых тел;

  • решать задачи, используя закон сохранения энергии в тепловых процессах, формулы, связывающие физические величины (количество теплоты, внутренняя энергия, температура, удельная теплоёмкость вещества, удельная теплота плавления и парообразования, удельная теплота сгорания топлива, коэффициент полезного действия теплового двигателя): на основе анализа условия задачи выделять физические величины и формулы, необходимые для её решения, и проводить расчёты.

Выпускник получит возможность научиться:

  • использовать знания о тепловых явлениях в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде; приводить примеры экологических последствий работы двигателей внутреннего сгорания (ДВС), тепловых и гидроэлектростанций;

  • приводить примеры практического использования физических знаний о тепловых явлениях;

  • различать границы применимости физических законов, понимать всеобщий характер фундаментальных физических законов (закон сохранения энергии в тепловых процессах) и ограниченность использования частных законов;

  • приёмам поиска и формулировки доказательств выдвинутых гипотез и теоретических выводов на основе эмпирически установленных фактов;

  • находить адекватную предложенной задаче физическую модель, разрешать проблему на основе имеющихся знаний о тепловых явлениях с использованием математического аппарата и оценивать реальность полученного значения физической величины.

Электрические и магнитные явления

Выпускник научится:

  • распознавать электромагнитные явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: электризация тел, взаимодействие зарядов, нагревание проводника с током, взаимодействие магнитов, электромагнитная индукция, действие магнитного поля на проводник с током, прямолинейное распространение света, отражение и преломление света, дисперсия света;

  • описывать изученные свойства тел и электромагнитные явления, используя физические величины: электрический заряд, сила тока, электрическое напряжение, электрическое сопротивление, удельное сопротивление вещества, работа тока, мощность тока, фокусное расстояние и оптическая сила линзы; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения; указывать формулы, связывающие данную физическую величину с другими величинами;

  • анализировать свойства тел, электромагнитные явления и процессы, используя физические законы: закон сохранения электрического заряда, закон Ома для участка цепи, закон Джоуля-Ленца, закон прямолинейного распространения света, закон отражения света, закон преломления света; при этом различать словесную формулировку закона и его математическое выражение;

  • решать задачи, используя физические законы (закон Ома для участка цепи, закон Джоуля-Ленца, закон прямолинейного распространения света, закон отражения света, закон преломления света) и формулы, связывающие физические величины (сила тока, электрическое напряжение, электрическое сопротивление, удельное сопротивление вещества, работа тока, мощность тока, фокусное расстояние и оптическая сила линзы, формулы расчёта электрического сопротивления при последовательном и параллельном соединении проводников); на основе анализа условия задачи выделять физические величины и формулы, необходимые для её решения, и проводить расчёты.

Выпускник получит возможность научиться:

  • использовать знания об электромагнитных явлениях в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде;

  • приводить примеры практического использования физических знаний о электромагнитных явлениях;

  • различать границы применимости физических законов, понимать всеобщий характер фундаментальных законов (закон сохранения электрического заряда) и ограниченность использования частных законов (закон Ома для участка цепи, закон Джоуля-Ленца и др.);

  • приёмам построения физических моделей, поиска и формулировки доказательств выдвинутых гипотез и теоретических выводов на основе эмпирически установленных фактов;

  • находить адекватную предложенной задаче физическую модель, разрешать проблему на основе имеющихся знаний об электромагнитных явлениях с использованием математического аппарата и оценивать реальность полученного значения физической величины.

Квантовые явления

Выпускник научится:

  • распознавать квантовые явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: естественная и искусственная радиоактивность, возникновение линейчатого спектра излучения;

  • описывать изученные квантовые явления, используя физические величины: скорость электромагнитных волн, длина волны и частота света, период полураспада; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения; указывать формулы, связывающие данную физическую величину с другими величинами, вычислять значение физической величины;

  • анализировать квантовые явления, используя физические законы и постулаты: закон сохранения энергии, закон сохранения электрического заряда, закон сохранения массового числа, закономерности излучения и поглощения света атомом;

  • различать основные признаки планетарной модели атома, нуклонной модели атомного ядра;

  • приводить примеры проявления в природе и практического использования радиоактивности, ядерных и термоядерных реакций, линейчатых спектров.

Выпускник получит возможность научиться:

  • использовать полученные знания в повседневной жизни при обращении с приборами (счетчик ионизирующих частиц, дозиметр), для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде;

  • соотносить энергию связи атомных ядер с дефектом массы;

  • приводить примеры влияния радиоактивных излучений на живые организмы; понимать принцип действия дозиметра;

  • понимать экологические проблемы, возникающие при использовании атомных электростанций, и пути решения этих проблем, перспективы использования управляемого термоядерного синтеза.

Элементы астрономии

Выпускник научится:

  • различать основные признаки суточного вращения звёздного неба, движения Луны, Солнца и планет относительно звёзд;

  • понимать различия между гелиоцентрической и геоцентрической системами мира.

Выпускник получит возможность научиться:

  • указывать общие свойства и отличия планет земной группы и планет-гигантов; малых тел Солнечной системы и больших планет; пользоваться картой звёздного неба при наблюдениях звёздного неба;

  • различать основные характеристики звёзд (размер, цвет, температура), соотносить цвет звезды с её температурой;

  • различать гипотезы о происхождении Солнечной системы.


© 2010-2022