Рабочая программа по физике 11 класс

Раздел Физика
Класс 11 класс
Тип Рабочие программы
Автор
Дата
Формат doc
Изображения Есть
For-Teacher.ru - все для учителя
Поделитесь с коллегами:


РАБОЧАЯ ПРОГРАММА

по физике

Уровень общего образования (класс) среднее общее 11 класс




ПОЯСНИТЕЛЬНАЯ ЗАПИСКА.

Программа детализирует и раскрывает содержание стандарта, определяет общую стратегию обучения, воспитания и развития учащихся средствами учебного предмета в соответствии с целями изучения физики, которые определены стандартом. Рабочая программа составлена в соответствии с учебным планом и на основе программы Г.Я.Мякишева для 10-11 класса общеобразовательных учреждений. Данная программа содержит все темы, включенные в федеральный компонент содержания образования: механика, молеку­лярная физика и термодинамика, электродинамика, кван­товая физика (атомная физика и физика атомного ядра).

Нормативно-правовое и инструктивно-методическое обеспечение

- Закон РФ от 29.12.2012 года №273 «Об образовании»;

- федерального компонента государственного стандарта общего образования, утвержденного приказом Министерства образования РФ № 1089 от 05.03.2004г;

- Приказ Минобразования России от 05.03.2004 года №1089 «Об утверждении федерального компонента государственных образовательных стандартов начального общего, основного общего и среднего (полного) общего образования;

- Приказ Минобразования России от 09.03.2004 года №1312 «Об утверждении федерального учебного плана и примерных учебных планов для образовательных учреждений РФ, реализующих программы общего образования»;

-Приказ Минобрнауки России от 17.12.2010 года № 1897 «Об утверждении и введении в действие федерального государственного образовательного стандарта основного общего образования»;

-Приказ Минобрнауки России от 31.01.2012 года № 69 «О внесении изменений в федеральный компонент государственных образовательных стандартов начального общего, основного общего и среднего (полного) общего образования, утвержденный приказом Министерства образования Российской Федерации от 5 марта 2004 г. № 1089»;

Рабочая программа по физике разработана для 11 класса на основе программы Г. Я. Мякишева. Данная программа содержит все темы, включенные в федеральный компонент содержания образования: электродинамика, кван­товая физика (атомная физика и физика атомного ядра).

Рабочая программа составлена с учетом разнородности контингента учащихся непрофилированной средней школы. Федеральный базисный учебный план для образовательных учреждений Российской Федерации отводит 140 часов для обязательного изучения физики на базовом уровне ступени среднего (полного) общего образования. В том числе в X и XI классах по 70 учебных часов из расчета 2 учебных часа в неделю. Школьным учебным планом на изучение физики в 11 классе на базовом уровне отводится 133 учебных часа из расчета 4 учебных часа в неделю, в том числе на практические и лабораторные работы - 10 часов. Поэтому она ориентирована на изучение физики в средней школе на уровне требований обязательного минимума содержания образования и, в то же время, дает возможность ученикам, интересующимся физикой, развивать свои способности при изучении данного предмета. Увеличение часов направлено на усиление общеобразовательной подготовки, для закрепления теоретических знаний практическими умениями применять полученные знания на практике (решение задач на применение физических законов) и расширения спектра образования интересов учащихся. В качестве основных учебников взят комплект учебников Мякишев Г.Я., Буховцев Б.Б. Физика 11 классы, М.: Просвещение, 2010 г.

Раздел 2. Общая характеристика предмета, его место в системе наук.

Значение физики в школьном образовании определяется ролью физической науки в жизни современного общества, ее влиянием на темпы развития научно-технического прогресса. Обучение физике вносит вклад в политехническую подготовку путем ознакомления учащихся с главными направлениями научно-технического прогресса, физическими основами работы приборов, технических устройств, технологических установок. Физика как наука о наиболее общих законах природы, выступая в качестве учебного предмета в школе, вносит существенный вклад в систему знаний об окружающем мире. Она раскрывает роль науки в экономическом и культурном развитии общества, способствует формированию современного научного мировоззрения. Для решения задач формирования основ научного мировоззрения, развития интеллектуальных способностей и познавательных интересов школьников в процессе изучения физики основное внимание следует уделять не передаче суммы готовых знаний, а знакомству с методами научного познания окружающего мира, постановке проблем, требующих от учащихся самостоятельной деятельности по их разрешению.

Изучение физики в средних (полных) образовательных учреждениях на базовом уровне направлено на достижение следующих целей:

  • освоение знаний о методах научного познания природы; современной физической картине мира: свойствах вещества и поля, пространственно-временных закономерностях, динамических и статистических законах природы, элементарных частицах и фундаментальных взаимодействиях, строении и эволюции Вселенной; знакомство с основами фундаментальных физических теорий: классической механики, молекулярно-кинетической теории, термодинамики, классической электродинамики, специальной теории относительности, квантовой теории

  • овладение умениями проводить наблюдения, планировать и выполнять эксперименты, выдвигать гипотезы и строить модели, применять полученные знания по физике для объяснения разнообразных физических явлений и свойств веществ; практического использования физических знаний; оценивать достоверность естественнонаучной информации;

  • применение знаний по физике для объяснения явлений природы, свойств вещества, принципов работы технических устройств, решения физических задач, самостоятельного приобретения и оценки достоверности новой информации физического содержания, использования современных информационных технологий для поиска, переработки и предъявления учебной и научно-популярной информации по физике;

  • развитие познавательных интересов, интеллектуальных и творческих способностей в процессе решения физических задач и самостоятельного приобретения новых знаний и умений по физике с использованием различных источников информации и современных информационных технологий; выполнения экспериментальных исследований, подготовки докладов, рефератов и других творческих работ;

  • воспитание убежденности в возможности познания законов природы; использования достижений физики на благо развития человеческой цивилизации; необходимости сотрудничества в процессе совместного выполнения задач, уважительного отношения к мнению оппонента при обсуждении проблем естественнонаучного содержания; готовности к морально-этической оценке использования научных достижений, чувства ответственности за защиту окружающей среды;

  • использование приобретенных знаний и умений для решения практических, жизненных задач, рационального природопользования и защиты окружающей среды, обеспечения безопасности жизнедеятельности человека и общества.

Общеучебные умения, навыки и способы деятельности

Познавательная деятельность:

  • использование для познания окружающего мира различных естественнонаучных методов: наблюдение, измерение, эксперимент, моделирование;

  • формирование умений различать факты, гипотезы, причины, следствия, доказательства, законы, теории;

  • овладение адекватными способами решения теоретических и экспериментальных задач;

  • приобретение опыта выдвижения гипотез для объяснения известных фактов и экспериментальной проверки выдвигаемых гипотез.

Информационно-коммуникативная деятельность:

  • владение монологической и диалогической речью. Способность понимать точку зрения собеседника и признавать право на иное мнение;

  • использование для решения познавательных и коммуникативных задач различных источников информации.

Рефлексивная деятельность:

  • владение навыками контроля и оценки своей деятельности, умением предвидеть возможные результаты своих действий:

  • организация учебной деятельности: постановка цели, планирование, определение оптимального соотношения цели и средств.

Раздел 3. Место учебного предмета, курса, дисциплины (модуля) в учебном плане.

Рабочая программа составлена с учетом разнородности контингента учащихся непрофилированной средней школы. Федеральный базисный учебный план для образовательных учреждений Российской Федерации отводит 140 часов для обязательного изучения физики на базовом уровне ступени среднего (полного) общего образования. В том числе в X и XI классах по 70 учебных часов из расчета 2 учебных часа в неделю. Школьным учебным планом на изучение физики в 11 классе на базовом уровне отводится 133 учебных часа из расчета 4 учебных часа в неделю, в том числе на практические и лабораторные работы - 10 часов. Поэтому она ориентирована на изучение физики в средней школе на уровне требований обязательного минимума содержания образования и, в то же время, дает возможность ученикам, интересующимся физикой, развивать свои способности при изучении данного предмета. Увеличение часов направлено на усиление общеобразовательной подготовки, для закрепления теоретических знаний практическими умениями применять полученные знания на практике (решение задач на применение физических законов) и расширения спектра образования интересов учащихся. В качестве основных учебников взят комплект учебников Мякишев Г.Я., Буховцев Б.Б. Физика 11 классы, М.: Просвещение, 2010 г.

Раздел 4. Содержание курса физики

  • проблемам и поведению в природной среде.

Электродинамика

Электромагнитная индукция (продолжение)

Магнитное поле. Вектор магнитной индукции. Сила Ампера. Сила Лоренца. Магнитные свойства вещества. Электромагнитная индукция. Закон электромагнитной индукции. Самоиндукция. Индуктивность. Энергия магнитного поля.

Лабораторная работа №1: «Наблюдение действие магнитного поля на ток».

Лабораторная работа №2: «Изучение явления электромагнитной индукции».

Демонстрации:

  • Взаимодействие параллельных токов.

  • Действие магнитного поля на ток.

  • Устройство и действие амперметра и вольтметра.

  • Устройство и действие громкоговорителя.

  • Отклонение электронного лучка магнитным полем.

  • Электромагнитная индукция.

  • Правило Ленца.

  • Зависимость ЭДС индукции от скорости изменения магнитного потока.

  • Самоиндукция.

  • Зависимость ЭДС самоиндукции от скорости изменения силы цели и от индуктивности проводника.

Знать: понятия: магнитное поле тока, индукция магнитного поля, электромагнитная индукция; закон электромагнитной индукции; правило Ленца, самоиндукция; индуктивность, электромагнитное поле.

Практическое применение: электроизмерительные приборы магнитоэлектрической системы.

Уметь: решать задачи на расчет характеристик движущегося заряда или проводника с током в магнитном поле, определять направление и величину сил Лоренца и Ампера, объяснять явление электромагнитной индукции и самоиндукции, решать задачи на применение закона электромагнитной индукции, самоиндукции.

Колебания и волны.

Механические колебания. Свободные колебания. Математический маятник. Гармонические колеба­ния. Амплитуда, период, частота и фаза колебаний. Вынужденные колебания. Резонанс. Автоколебания.

Электрические колебания.

Свободные колебания в колебательном контуре. Период свободных электри­ческих колебаний. Вынужденные колебания. Пере­менный электрический ток. Емкость и индуктив­ность в цепи переменного тока. Мощность в цеди пе­ременного тока. Резонанс в электрической цепи.

Производство, передача и потребление электри­ческой энергии. Генерирование электрической энер- гии. Трансформатор. Передача электрической энер­гии.

Механические волны. Продольные и поперечные волны. Длина волны. Скорость распространения вол­ны. Звуковые волны. Интерференция воли. Принцип Гюйгенса. Дифракция волн.

Электромагнитные волны. Излучение электромаг­нитных волн. Свойства электромагнитных волн. Принципы радиосвязи. Телевидение.

Лабораторная работа №3: «Определение ускорения свободного падения при помощи маятника».

Демонстрации:

  • Свободные электромагнитные колебания низкой частоты в колебательном контуре.

  • Зависимость частоты свободных электромагнитных колебаний от электроемкости и индуктивности контура.

  • Незатухающие электромагнитные колебания в генераторе на транзисторе.

  • Получение переменного тока при вращении витка в магнитном поле.

  • Устройство и принцип действия генератора переменного тока (на модели).

  • Осциллограммы переменною тока

  • Устройство и принцип действия трансформатора

  • Передача электрической энергии на расстояние с мощью понижающего и повышающего трансформатора.

  • Электрический резонанс.

  • Излучение и прием электромагнитных волн.

  • Модуляция и детектирование высокочастотных электромагнитных колебаний.

Знать: понятия: свободные и вынужденные колебания; колебательный контур; переменный ток; резонанс, электромагнитная волна, свойства электромагнитных волн.

Практическое применение: генератор переменного тока, схема радиотелефонной связи, телевидение.

Уметь: Измерять силу тока и напряжение в цепях переменного тока. Использовать трансформатор для преобразования токов и напряжений. Определять неизвестный параметр колебательного контура, если известны значение другого его параметра и частота свободных колебаний; рассчитывать частоту свободных колебаний в колебательном контуре с известными параметрами. Решать задачи на применение формул:Рабочая программа по физике 11 класс, Рабочая программа по физике 11 класс, Рабочая программа по физике 11 класс, Рабочая программа по физике 11 класс,

Рабочая программа по физике 11 класс, Рабочая программа по физике 11 класс, Рабочая программа по физике 11 класс. Объяснять распространение электромагнитных волн.

Оптика

Световые лучи. Закон преломления света. Призма. Дисперсия света. Формула тонкой линзы. Получение изображения с помощью линзы. Светоэлектромагнитные волны. Скорость света и методы ее измерения, Интерференция света. Когерентность. Дифракция света. Дифракционная решетка. Поперечность световых волн. Поляризация света. Излучение и спектры. Шкала электромагнитных волн.

Лабораторная работа №4: Измерение показателя преломления стекла.

Лабораторная работа №5: «Определение оптичнской силы и фокусного расстояния собирающей линзы».

Лабораторная работа №6: «Измерение длины световой волны».

Демонстрации:

  • Законы преломления света.

  • Полное отражение.

  • Световод.

  • Получение интерференционных полос.

  • Дифракция света на тонкой нити.

  • Дифракция света на узкой щели.

  • Разложение света в спектр с помощью дифракционной решетки.

  • Поляризация света поляроидами.

  • Применение поляроидов для изучения механических напряжений в деталях конструкций.

Знать: понятия: интерференция, дифракция и дисперсия света.

Законы отражения и преломления света,

Практическое применение: полного отражения, интерференции, дифракции и поляриза-ции света.

Уметь: измерять длину световой волны, решать задачи на применение формул, связывающих длину волны с частотой и скоростью, период колебаний с циклической частотой; на применение закона преломления света.

Основы специальной теории относительности.

Постулаты теории относительности. Принцип от­носительности Эйнштейна. Постоянство скорости све­та. Пространство и время в специальной теории отно­сительности. Релятивистская динамика. Связь массы с энергией.

Знать: понятия: принцип постоянства скорости света в вакууме, связь массы и энергии.

Уметь: определять границы применения законов классической и релятивистской механики.

Квантовая физика

Световые кванты.

Различные виды электромагнитных излучений и их практическое применение: свойства и применение инфракрасных, ультрафиолетовых и рентгеновских излучений. Шкала электромагнитных излучений.. Постоян­ная Планка. Фотоэффект. Уравнение Эйнштейна для фотоэффекта. Фотоны. [Гипотеза Планка о квантах.] Фотоэффект. Уравнение Эйнштейна для фотоэффекта. Фотоны. [Гипотеза де Бройля о волновых свойствах частиц. Корпускулярно-волновой дуализм. Соотношение неопределенности Гейзенберга.]

Строение атома. Опыты Резерфорда. Квантовые постулаты Бора. Испускание и поглощение света атомом. Лазеры.

Лабораторная работа №7: «Наблюдение действие магнитного поля на ток».

Лабораторная работа №8: «Наблюдение сплошного и линейчатого спектров».

Демонстрации:

  • Фотоэлектрический эффект на установке с цинковой платиной.

  • Законы внешнего фотоэффекта.

  • Устройство и действие полупроводникового и вакуумного фотоэлементов.

  • Устройство и действие фотореле на фотоэлементе.

  • Модель опыта Резерфорда.

  • Невидимые излучения в спектре нагретого тела.

  • Свойства инфракрасного излучения.

  • Свойства ультрафиолетового излучения.

  • Шкала электромагнитных излучений (таблица).

  • Зависимость плотности потока излучения от расстояния до точечного источника.

  • Фотоэлектрический эффект на установке с цинковой платиной.

  • Законы внешнего фотоэффекта.

  • Устройство и действие полупроводникового и вакуумного фотоэлементов.

  • Устройство и действие фотореле на фотоэлементе.

Знать: Понятия: фотон; фотоэффект; корпускулярно-волновой дуализм; практическое применение: примеры практического применения электромагнитных волн инфракрасного, видимого, ультрафиолетового и рентгеновского диапазонов частот. Законы фотоэффекта: постулаты Бора

Уметь: объяснять свойства различных видов электромагнитного излучения в зависимости от его длины волны и частоты. Решать задачи на применение формул, связывающих энергию и импульс фотона с частотой соответствующей световой волны. Вычислять красную границу фотоэффекта и энергию фотозлектронов на основе уравнения Эйнштейна

Атомная физика.

Строение атома. Опыты Резерфорда. Квантовые постулаты Бора. Модель атома водорода Бора. [Модели строения атомного ядра: протонно-нейтронная модель строения атомного ядра.] Ядерные силы. Дефект массы и энергия связи нуклонов в ядре. Ядерная энергетика. Трудности теории Бора. Квантовая механика. Гипотеза де Бройля. Корпускулярное волновой дуализм. Дифракция электронов. Лазеры.

Физика атомного ядра.

Методы регистрации эле­ментарных частиц. Радиоактивные превращения. Закон радиоактивного распада. Протон-нейтронная мо­дель строения атомного ядра. Энергия связи ну­клонов в ядре. Деление и синтез ядер. Ядерная энергетика. Влияние ионизирующей радиации на живые организмы. [Доза излучения, закон радиоактивного распада и его статистический характер. Элементарные частицы: частицы и античастицы. Фундаментальные взаимодействия]

Демонстрации:

  • Модель опыта Резерфорда.

  • Наблюдение треков в камере Вильсона.

  • Устройство и действие счетчика ионизирующих частиц.

Знать: ядерная модель атома; ядерные реакции, энергия связи; радиоактивный распад; цепная реакция деления; термоядерная реакция; элементарная частица, атомное ядро.

закон радиоактивного распада.

Практическое применение: устройство и принцип действия фотоэлемента; примеры технического - использования фотоэлементов; принцип спектрального анализа; примеры практических применений спектрального анализа; устройство и принцип действия ядерного реактора.

Уметь:. Определять продукты ядерных реакций на основе законов сохранения электрического заряда и массового числа.
Рассчитывать энергетический выход ядерной реакции. Определять знак заряда или направление движения элементарных частиц по их трекам на фотографиях.

Повторение и подготовка к ЕГЭ (резерв свободного учебного времени) - 20 часов

Астрономия

Требования к уровню подготовки обучающихся 11 класса.

Обучающиеся должны знать:

Электродинамика.

Понятия: электромагнитная индукция, самоиндукция, индуктивность, свободные и вынужденные колебания, колебательный контур, переменный ток, резонанс, электромагнитная волна, интерференция, дифракция и дисперсия света.

Законы и принципы: закон электромагнитной индукции, правило Ленца, законы отражения и преломления света, связь массы и энергии.

Практическое применение: генератор, схема радиотелефонной связи, полное отражение.

Учащиеся должны уметь:

- Измерять силу тока и напряжение в цепях переменного тока.

- Использовать трансформатор.

- Измерять длину световой волны.

Квантовая физика

Понятия: фотон, фотоэффект, корпускулярно - волновой дуализм, ядерная модель атома, ядерная реакция, энергия связи, радиоактивный распад, цепная реакция, термоядерная реакция, элементарные частицы.

Законы и принципы: законы фотоэффекта, постулаты Бора, закон радиоактивного распада.

Практическое применение: устройство и принцип действия фотоэлемента, принцип спектрального анализа, принцип работы ядерного реактора.

Учащиеся должны уметь: решать задачи на применение формул, связывающих энергию и импульс фотона с частотой световой волны, вычислять красную границу фотоэффекта, определять продукты ядерной реакции.

В результате изучения физики на базовом уровне ученик должен

знать/понимать

  • смысл понятий: физическое явление, гипотеза, закон, теория, вещество, взаимодействие, электромагнитное поле, волна, фотон, атом, атомное ядро, ионизирующие излучения, планета, звезда, галактика, Вселенная;

  • смысл физических величин: скорость, ускорение, масса, сила, импульс, работа, механическая энергия, внутренняя энергия, абсолютная температура, средняя кинетическая энергия частиц вещества, количество теплоты, элементарный электрический заряд;

  • смысл физических законов классической механики, всемирного тяготения, сохранения энергии, импульса и электрического заряда, термодинамики, электромагнитной индукции, фотоэффекта;

  • вклад российских и зарубежных ученых, оказавших наибольшее влияние на развитие физики;

уметь

  • описывать и объяснять физические явления и свойства тел: движение небесных тел и искусственных спутников Земли; свойства газов, жидкостей и твердых тел; электромагнитную индукцию, распространение электромагнитных волн; волновые свойства света; излучение и поглощение света атомом; фотоэффект;

  • отличать гипотезы от научных теорий; делать выводы на основе экспериментальных данных; приводить примеры, показывающие, что: наблюдения и эксперимент являются основой для выдвижения гипотез и теорий, позволяют проверить истинность теоретических выводов; физическая теория дает возможность объяснять известные явления природы и научные факты, предсказывать еще неизвестные явления;

  • приводить примеры практического использования физических знаний: законов механики, термодинамики и электродинамики в энергетике; различных видов электромагнитных излучений для развития радио и телекоммуникаций, квантовой физики в создании ядерной энергетики, лазеров;

  • воспринимать и на основе полученных знаний самостоятельно оценивать информацию, содержащуюся в сообщениях СМИ, Интернете, научно-популярных статьях;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • обеспечения безопасности жизнедеятельности в процессе использования транспортных средств, бытовых электроприборов, средств радио- и телекоммуникационной связи.;

  • оценки влияния на организм человека и другие организмы загрязнения окружающей среды;

  • рационального природопользования и защиты окружающей среды.

Раздел 5. «Тематическое планирование»

  • Рабочая программа предусматривает формирование у учащихся общеучебных умений и навыков, универсальных способов деятельности и ключевых компетенций. Приоритетами курса физики на данном этапе изучения основного общего образования являются:

  • Познавательная деятельность: использование для познания окружающего мира различных естественнонаучных методов: наблюдение, измерение, эксперимент, моделирование; формирование умений различать факты, гипотезы, причины, следствия, доказательства, законы, теории; овладение адекватными способами решения теоретических и экспериментальных задач; приобретение опыта выдвижения гипотез для объяснения известных фактов и экспериментальной проверки выдвигаемых гипотез.

  • Информационно-коммуникативная деятельность: владение монологической и диалогической речью; способность понимать точку зрения собеседника и признавать право на иное мнение; использование для решения познавательных и коммуникативных задач различных источников информации.

  • Рефлексивная деятельность: владение навыками контроля и оценки своей деятельности, умением предвидеть возможные результаты своих действий; организация учебной деятельности: постановка цели, планирование, определение оптимального соотношения цели и средств.

  • В результате изучения курса физики учащиеся должны овладеть определенными знаниями и умениями по темам:

Раздел

Тема раздела

Количество часов

Лабораторная работа

Самостоятельная работа

Контрольная работа

11 класс

133

Основы электродинамики (продолжение)

19


Магнитное поле

7

№ 1. Наблю­дение действия магнитного поля на ток


Электромагнитная индукция

12

№ 2. Изучение явления электро­магнитной индук­ции

№1 по теме «Магнитное поле».

Колебания и волны


37


Механические колебания

11

№ 3. Опреде­ление ускорения свободного паде­ния при помощи маятника

№2 по теме «Механические колебания».

Электромагнитные колебания. Производство, передача и исполь­зование электрической энергии

17

№3 по теме «Электромагнит­ные колебания».

Механические волны

3

Электромагнитные волны

6

№4 по темам «Основные характеристики, свойства и использование элек­тромагнитных волн».

Оптики


27


Световые волны

19

№ 4. Изме­рение показателя преломления стек­ла. № 5. Опреде­ление оптической силы и фокусного расстояния собира­ющей линзы. № 6. Измере­ние длины свето­вой волны

по теме «Геометрическая оптика».

№5 по теме «Световые волны»

Элементы теории относительности

8


№ 7. Наблю­дение сплошного и линейчатого спектров

Квантовая физика

27


Световые кванты

8

№6 по теме «Световые кванты СТО».

Атомная физика Физика атомного ядра. Элементарные частицы

19

№7 по теме «АТОМ И АТОМНОЕ ЯДРО».

Элементы астрономии

6

Лабораторный практикум

10

Обобщающее повторение

7

ИТОГОВАЯ КОНТРОЛЬНАЯ РАБОТА ЗА КУРС ШКОЛЬНОЙ ФИЗИКИ


Для всех разделов при изучении курса физики средней школы в раздел «Требования к уровню подготовки выпускников»:

знать/понимать

  • основные положения изучаемых физических теорий и их роль в формировании научного мировоззрения;

  • вклад российских и зарубежных ученых, оказавших наибольшее влияние на развитие физики;

уметь

  • приводить примеры опытов, иллюстрирующих, что: наблюдения и эксперимент служат основой для выдвижения гипотез и построения научных теорий; эксперимент позволяет проверить истинность теоретических выводов; физическая теория дает возможность объяснять явления природы и научные факты; физическая теория позволяет предсказывать еще неизвестные явления и их особенности; при объяснении природных явлений используются физические модели; один и тот же природный объект или явление можно исследовать на основе использования разных моделей; законы физики и физические теории имеют свои определенные границы применимости;

  • описывать фундаментальные опыты, оказавшие существенное влияние на развитие физики;

  • применять полученные знания для решения физических задач;

  • представлять результаты измерений с учетом их погрешностей;

  • воспринимать и на основе полученных знаний самостоятельно оценивать информацию, содержащуюся в сообщениях СМИ, научно-популярных статьях; использовать новые информационные технологии для поиска, обработки и предъявления информации по физике в компьютерных базах данных и сетях (сети Интернета);

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • обеспечения безопасности жизнедеятельности в процессе использования транспортных средств, бытовых электроприборов, средств радио- и телекоммуникационной связи;

  • анализа и оценки влияния на организм человека и другие организмы загрязнения окружающей среды;

  • рационального природопользования и защиты окружающей среды;

  • определения собственной позиции по отношению к экологическим проблемам.

Раздел 6. «Календарно - тематическое планирование»

по курсу физики 11 класса.

136 ч; 4 ч в неделю

Учебник 11 класса: авторы Г. Я. Мякишев, Б. Б. Буховцев

Приложение 1


Раздел 7. «Учебно-методическое и материально-техническое обеспечение образовательного процесса»


  1. Программы общеобразовательных учреждений. Физика 10 - 11 класс. Авторы: П.Г. Саенко, В.С. Данюшенков и др. М.: Просвещение, 2007 г.

  2. Мякишев Г.Я. Физика учебник для 11 кл. общеобразоват. Учреждений : базовый и профил.уровни / Г.Я. Мякишев, Б.Б. Буховцев. - М.: Просвещение, 2011.

  3. Марон А.Е. Физика. 11 класс: дидактические материалы / А.Е. Марон, Е.А. Марон. - 4-е изд., стереотип. - М.: Дрофа, 2007 г.

  4. Кирик Л.А. Самостоятельные и контрольные работы по физике. Разноуровневые дидактические материалы. 11 класс

  5. Волков В.А. Универсальное поурочные разработки по физике. 11 класс. - М.: ВАКО, 2006.

  6. Контрольно-измерительные материалы. Физика: 11 класс /Сост.И.И.Зорин.-М.:ВАКО, 2011 г

  7. Рымкевич А.П., Рымкевич П.А. Сборник задач по физике.

  8. Фронтальные лабораторные занятия по физике в 7 - 11 классах общеобразовательных учреждений. Кн.для учителя/В.А.Буров, Ю.М. Дик и др. - М.: Просвещение: Учеб.литер, 7

  9. Диск: Уроки физики Кирилла и Мефодия. 11 класс.

  10. Диск: Экспресс подготовка к экзаменам

Темы проектов:


  1. Использование электроэнергии;

  2. Развитие средств связи;

  3. Применения в технике различных видов электромагнитных излучений;

  4. Специальная теория относительности;

  5. Буду­щее квантовой техники;

  6. Открытие радиоактивности;

  7. Эколо­гия использова­ния атомной энергии;

  8. Единая физическая картина Мира;

  9. Астрология - ветреная сестра астрономии

Цифровые образовательные ресурсы:


№п/п

Наименование

Издательство

Виртуальная физическая лаборатория

Электронные датчики

Библиотека наглядных пособий

1 с: школа. Физика, 7- 11 кл

дрофа

Интерактивный курс физики для 7- 11 кл

физикон

Живая физика

Институт новых технологий

Физика 7-11 кл

Кирилл и Мефодий

Интерактивная энциклопедия «от плуга до лазера 2.0»

Компания «новый диск»

Открытая физика 1.1

физикон

«Астрономия» 9-10 кл

физикон

Презентации уроков по физике

(собственные)

Сайт: «Teachpro»

Интернет

Раздел 8. «Результаты освоения конкретного учебного курса, предмета, дисциплин (модулей) и система их оценки»

Обучающиеся должны знать:

Электродинамика.

Понятия: электромагнитная индукция, самоиндукция, индуктивность, свободные и вынужденные колебания, колебательный контур, переменный ток, резонанс, электромагнитная волна, интерференция, дифракция и дисперсия света.

Законы и принципы: закон электромагнитной индукции, правило Ленца, законы отражения и преломления света, связь массы и энергии.

Практическое применение: генератор, схема радиотелефонной связи, полное отражение.

Учащиеся должны уметь:

- Измерять силу тока и напряжение в цепях переменного тока.

- Использовать трансформатор.

- Измерять длину световой волны.

Квантовая физика

Понятия: фотон, фотоэффект, корпускулярно - волновой дуализм, ядерная модель атома, ядерная реакция, энергия связи, радиоактивный распад, цепная реакция, термоядерная реакция, элементарные частицы.

Законы и принципы: законы фотоэффекта, постулаты Бора, закон радиоактивного распада.

Практическое применение: устройство и принцип действия фотоэлемента, принцип спектрального анализа, принцип работы ядерного реактора.

Учащиеся должны уметь: решать задачи на применение формул, связывающих энергию и импульс фотона с частотой световой волны, вычислять красную границу фотоэффекта, определять продукты ядерной реакции.

В результате изучения физики на базовом уровне ученик должен

знать/понимать

  • смысл понятий: физическое явление, гипотеза, закон, теория, вещество, взаимодействие, электромагнитное поле, волна, фотон, атом, атомное ядро, ионизирующие излучения, планета, звезда, галактика, Вселенная;

  • смысл физических величин: скорость, ускорение, масса, сила, импульс, работа, механическая энергия, внутренняя энергия, абсолютная температура, средняя кинетическая энергия частиц вещества, количество теплоты, элементарный электрический заряд;

  • смысл физических законов классической механики, всемирного тяготения, сохранения энергии, импульса и электрического заряда, термодинамики, электромагнитной индукции, фотоэффекта;

  • вклад российских и зарубежных ученых, оказавших наибольшее влияние на развитие физики;

уметь

  • описывать и объяснять физические явления и свойства тел: движение небесных тел и искусственных спутников Земли; свойства газов, жидкостей и твердых тел; электромагнитную индукцию, распространение электромагнитных волн; волновые свойства света; излучение и поглощение света атомом; фотоэффект;

  • отличать гипотезы от научных теорий; делать выводы на основе экспериментальных данных; приводить примеры, показывающие, что: наблюдения и эксперимент являются основой для выдвижения гипотез и теорий, позволяют проверить истинность теоретических выводов; физическая теория дает возможность объяснять известные явления природы и научные факты, предсказывать еще неизвестные явления;

  • приводить примеры практического использования физических знаний: законов механики, термодинамики и электродинамики в энергетике; различных видов электромагнитных излучений для развития радио и телекоммуникаций, квантовой физики в создании ядерной энергетики, лазеров;

  • воспринимать и на основе полученных знаний самостоятельно оценивать информацию, содержащуюся в сообщениях СМИ, Интернете, научно-популярных статьях;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • обеспечения безопасности жизнедеятельности в процессе использования транспортных средств, бытовых электроприборов, средств радио- и телекоммуникационной связи.;

  • оценки влияния на организм человека и другие организмы загрязнения окружающей среды;

рационального природопользования и защиты окружающей среды

Для всех разделов при изучении курса физики средней школы в раздел «Требования к уровню подготовки выпускников»:

знать/понимать

  • основные положения изучаемых физических теорий и их роль в формировании научного мировоззрения;

  • вклад российских и зарубежных ученых, оказавших наибольшее влияние на развитие физики;

уметь

  • приводить примеры опытов, иллюстрирующих, что: наблюдения и эксперимент служат основой для выдвижения гипотез и построения научных теорий; эксперимент позволяет проверить истинность теоретических выводов; физическая теория дает возможность объяснять явления природы и научные факты; физическая теория позволяет предсказывать еще неизвестные явления и их особенности; при объяснении природных явлений используются физические модели; один и тот же природный объект или явление можно исследовать на основе использования разных моделей; законы физики и физические теории имеют свои определенные границы применимости;

  • описывать фундаментальные опыты, оказавшие существенное влияние на развитие физики;

  • применять полученные знания для решения физических задач;

  • представлять результаты измерений с учетом их погрешностей;

  • воспринимать и на основе полученных знаний самостоятельно оценивать информацию, содержащуюся в сообщениях СМИ, научно-популярных статьях; использовать новые информационные технологии для поиска, обработки и предъявления информации по физике в компьютерных базах данных и сетях (сети Интернета);

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • обеспечения безопасности жизнедеятельности в процессе использования транспортных средств, бытовых электроприборов, средств радио- и телекоммуникационной связи;

  • анализа и оценки влияния на организм человека и другие организмы загрязнения окружающей среды;

  • рационального природопользования и защиты окружающей среды;

  • определения собственной позиции по отношению к экологическим проблемам.

Проверка знаний учащихся

Оценка ответов учащихся

Оценка «5» ставиться в том случае, если учащийся показывает верное понимание физической сущности рассматриваемых явлений и закономерностей, законов и теорий, а так же правильное определение физических величин, их единиц и способов измерения: правильно выполняет чертежи, схемы и графики; строит ответ по собственному плану, сопровождает рассказ собственными примерами, умеет применять знания в новой ситуации при выполнении практических заданий; может установить связь между изучаемым и ранее изученным материалом по курсу физики, а также с материалом, усвоенным при изучении других предметов.

Оценка «4» ставиться, если ответ ученика удовлетворяет основным требованиям на оценку 5, но дан без использования собственного плана, новых примеров, без применения знаний в новой ситуации, 6eз использования связей с ранее изученным материалом и материалом, усвоенным при изучении др. предметов: если учащийся допустил одну ошибку или не более двух недочётов и может их исправить самостоятельно или с небольшой помощью учителя.

Оценка «3» ставиться, если учащийся правильно понимает физическую сущность рассматриваемых явлений и закономерностей, но в ответе имеются отдельные пробелы в усвоении вопросов курса физики, не препятствующие дальнейшему усвоению вопросов программного материала: умеет применять полученные знания при решении простых задач с использованием готовых формул, но затрудняется при решении задач, требующих преобразования некоторых формул, допустил не более одной грубой ошибки и двух недочётов, не более одной грубой и одной негрубой ошибки, не более 2-3 негрубых ошибок, одной негрубой ошибки и трёх недочётов; допустил 4-5 недочётов.

Оценка «2» ставится, если учащийся не овладел основными знаниями и умениями в соответствии с требованиями программы и допустил больше ошибок и недочётов чем необходимо для оценки «3».

Оценка «1» ставится в том случае, если ученик не может ответить ни на один из поставленных вопросов.

Оценка контрольных работ

Оценка «5» ставится за работу, выполненную полностью без ошибок и недочётов.

Оценка «4» ставится за работу выполненную полностью, но при наличии в ней не более одной грубой и одной негрубой ошибки и одного недочёта, не более трёх недочётов.

Оценка «3» ставится, если ученик правильно выполнил не менее 2/3 всей работы или допустил не более одной грубой ошибки и.двух недочётов, не более одной грубой ошибки и одной негрубой ошибки, не более трех негрубых ошибок, одной негрубой ошибки и трех недочётов, при наличии 4 - 5 недочётов.

Оценка «2» ставится, если число ошибок и недочётов превысило норму для оценки 3 или правильно выполнено менее 2/3 всей работы.

Оценка «1» ставится, если ученик совсем не выполнил ни одного задания.

Оценка лабораторных работ

Оценка «5» ставится, если учащийся выполняет работу в полном объеме с соблюдением необходимой последовательности проведения опытов и измерений; самостоятельно и рационально монтирует необходимое оборудование; все опыты проводит в условиях и режимах, обеспечивающих получение правильных результатов и выводов; соблюдает требования правил безопасности труда; в отчете правильно и аккуратно выполняет все записи, таблицы, рисунки, чертежи, графики, вычисления; правильно выполняет анализ погрешностей.

Оценка «4» ставится, если выполнены требования к оценке «5» , но было допущено два - три недочета, не более одной негрубой ошибки и одного недочёта.

Оценка «3» ставится, если работа выполнена не полностью, но объем выполненной части таков, позволяет получить правильные результаты и выводы: если в ходе проведения опыта и измерений были допущены ошибки.

Оценка «2» ставится, если работа выполнена не полностью и объем выполненной части работы не позволяет сделать правильных выводов: если опыты, измерения, вычисления, наблюдения производились неправильно.

Во всех случаях оценка снижается, если ученик не соблюдал требования правил безопасности груда.

Перечень ошибок.

Грубые ошибки.

  1. Незнание определений основных понятий, законов, правил, основных положений теории, формул, общепринятых символов обозначения физических величин и единиц их измерения.

  2. Неумение выделять в ответе главное.

  3. Неумение применять знания для решения задач и объяснения физических явлений; неправильно сформулированные вопросы задачи или неверное объяснение хода ее решения; незнание приемов решения задач, аналогично ранее решенным в классе; ошибки.

  4. Неумение читать и строить графики и принципиальные схемы.

  5. Неумение подготовить к работе установку или лабораторное оборудование, провести опыт, необходимые расчеты или использовать полученные данные для выводов.

  6. Небрежное отношение к лабораторному оборудованию и измерительным приборам.

  7. Неумение определить цену деления измерительного прибора.

  8. Нарушение требований правил безопасного труда при выполнении эксперимента.

Негрубые ошибки.

  1. Неточности формулировок, определений, понятий, законов, теорий, вызванные неполнотой охвата основных признаков определяемого понятия; ошибки, вызванные несоблюдением условий проведения опыта или измерений.

  2. Ошибки в условных обозначениях на принципиальных схемах; неточности чертежей, графиков, схем.

  3. Пропуск или неточное написание наименований единиц физических величин.

  4. Нерациональный выбор хода решения.

Недочеты.

  1. Нерациональные записи при вычислениях, нерациональные приемы вычислений, преобразований и решений задач.

  2. Арифметические ошибки в вычислениях, если эти ошибки грубо не искажают реальность полученного результата.

  3. Отдельные погрешности в формулировке вопроса или ответа.

  4. Небрежное заполнение записей, чертежей, схем, графиков.

  5. Орфографические и пунктуационные ошибки.


  • Тесты: «5» - выполнение задания на 88 - 100%;

«4» - на 62 - 86%;

«3» - на 36 - 60%;

«2» - на 0 - 34 %;














18


© 2010-2022