Основные закономерности существования живого

1.     Место урока в теме. Урок находится в начале изучения темы «Изучение о клетке», поэтому по дидактическим целям его можно классифицировать как вводный. 2.     Вид урока определен  как урок – лекция. Вид лекции – лекция -  информация 3.     При постановке задач для учителя я ориентировалась на основные принципы развивающего обучения, основную цель биологического образования – создание условий для становления научного мировоззрения учащихся.       Кроме того, большое   внимание уделялось  основной развивающей задаче – развитие системности мышления учащихся при изучении данной темы. 4.     При выборе вида лекции и методов проведения урока наиболее целесообразной показалась лекция – информация, которая ориентирована на изложение и объяснение старшеклассникам научной информации, подлежащей осмыслению и запоминанию. Кроме того, материал по теме был дан по принципу опережения, с целью осуществления системы контроля на последующих уроках и дальнейших темах, что содействует становлению системного мышления. 5.     Лекция рассчитана на 2 часа учебного времени и включает следующие приемы: рассказ, эвристическая  беседа, демонстрация наглядного материала, материалов презентации, таблиц, схем. 6.     Особое место в организации урока занимает инструктивная карта  для учащихся, которая выдается каждому из них. В карте отражен основной теоретический материал лекции, а также представлены незаконченные схемы, таблицы, определения, которые учащиеся заполняют в процессе прослушивания учителя, а также отвечают на вопросы с помощью этого текста, следят за текстом, выполняя  работу с терминологическим аппаратом.          Такой прием использования дидактической карточки применен в связи с тем, что материал темы объемен, будет использован в течение всего учебного года при осуществлении системы контроля. Кроме того, логика т объем материала лекции отличается от таковых в школьном учебнике, по причине акцентирования внимания автора урока на развитие системного мышления школьников на уроке, при изучении темы «Клетка» в курсе «Общей биологии».
Раздел Биология
Класс -
Тип Конспекты
Автор
Дата
Формат doc
Изображения Есть
For-Teacher.ru - все для учителя
Поделитесь с коллегами:

ТЕМА УРОКА «Основные закономерности существования живого»

Инструктивная карта для учащихся 9 классов

Содержание

Деятельность учащихся

План лекции:

  1. Определение понятия «жизни»

  2. Основные параметры, характеризующие живое

  3. Уровни организации жизни

  4. Клетка - как элементарная единица живого, ее целостность и дискретность


ЛЕКЦИЯ №1


I. Изучение нового материала


1. Жизнь - это ….?

ЖИЗНЬ - одна из форм существования материи, закономерно возникающая при

определенных условиях в процессе ее развития. Организмы отличаются от неживых объектов обменом веществ, раздражимостью, способностью к размножению, росту, развитию, активной регуляции своего состава и функций, к различным формам движения, приспособляемостью к среде и т. п. Ученые полагают, что жизнь возникла путем абиогенеза.

  • Энгельс Ф.

Жизнь есть способ существования белковых тел, и этот способ существования заключается по своему существу в постоянном обновлении их химических составных частей путем питания и выделения.

  • Опарин А. И., академик

Жизнь это особая, качественно отличная от неорганического мира форма движения материи, и организмам присущи особые, специфически биологические свойства и закономерности, не сводимые только к законам, царящим в неорганической природе.

  • Волъкенштейн М.В., академик

Живые тела, существующие на Земле, представляют собой открытые, саморегулирующиеся и самовоспроизводящиеся системы, построенные из полимеров - белков и нуклеиновых кислот.

  • Энгельгардт В.А., 1976

Жизнь - это, прежде всего, система систем, в которой отчетливо выражено не параллельное, а последовательное сочетание. Тем самым создается предпосылка для организации этой последовательности по принципу иерархической соподчиненности.

  • Академик Н.П.Дубинин

Жизнь - это непрерывный в пространстве и времени поток, в котором преобразуются вещество, энергия и информация.

1. Из предложенных определений выбрать ключевые слова, характеризующие - жизнь.

2. Дать четкие параметры, характеризующие универсальность




2. Основные параметры живого

Схеме 1

Основные закономерности существования живого

СОсновные закономерности существования живоговойства

жОсновные закономерности существования живогоОсновные закономерности существования живогоОсновные закономерности существования живогоОсновные закономерности существования живогоОсновные закономерности существования живогоивых

организмов


оОсновные закономерности существования живогобмен веществ, поток энергии




Биологическая

система

Основные закономерности существования живого


Основные закономерности существования живогоРаздражимость

Основные закономерности существования живогоГомеостаз

Основные закономерности существования живогоОсновные закономерности существования живогоОсновные закономерности существования живогоОсновные закономерности существования живогоНаследственность

размножение (репродукция)

развитие (рост)

Движение


Единство частей и целого


3. Уровни, характеризующие живое

ТОсновные закономерности существования живогоаблица 1

Название уровня

Компоненты, составляющие уровень

пОсновные закономерности существования живогоопуляционно -

видовой

Совокупность организмов одного и того же вида, объединенных общим местом обитания, в котором формируются популяции

Основные закономерности существования живогоорганизменный

Отдельная особь определенного вида, способная к развитию как живая система - от момента зарождения до прекращения существования

Основные закономерности существования живогоклеточный

Отдельная клетка

мОсновные закономерности существования живогоолекулярный

Молекулы веществ - органических и неорганических, которые входят в состав и клеток, и организмов


Работая со схемой №1, привести свои примеры характеризующие каждый уровень




Работая с таблицей №1, приведите примеры по каждому уровню

4.Клетка __________________________________________________________________________________

_______________________________________________________________________________________

_______________________________________________________________________________________

_______________________________________________________________________________________

_______________________________________________________________________________________

Основные закономерности существования живого

Вывод: клетка - _____________________________________________________________ _____________________________________________________________ _____________________________________________________________ _____________________________________________________________

Рис 1 Животная клетка

КЛЕТКА - наилучший живой объект на котором хорошо представлены системы характеризующие живое с его целостностью и дискретностью

4.1. Клетка как единое целое состоит из основных частей

СТРОЕНИЕ КЛЕТКИ

Основные закономерности существования живогоОсновные закономерности существования живогоОсновные закономерности существования живого


_____________ _________ ___________

Основные закономерности существования живогоОсновные закономерности существования живогоСтруктура

Функция

СТРУКТУРА -

ФУНКЦИЯ-


Разбор клетки, используя рисунки учебника стр. 126, рис. 67, изображения «3» и схемы «1» на экране диапроектора

Самостоятельная работа

Рассматривая строение клетки, сравнить растительную и животную клетку.

Сделать вывод


1. Выделите главные компоненты клетки, заострив внимание на структуре и функциях ядра

2. Дать определение структуре, свойствам и функциям на примере ядра

4.2. Характеристика каждой части структуры (клетки)

Таблица 2

Название органа

Особенности строения, функции

НАРУЖНАЯ

ЦИТОПЛАЗМАТИЧЕСКАЯ МЕМБРАНА

ЦИТОПЛАЗМАТИЧЕСКИЙ МАТРИКС

ПЛАСТИДЫ

(ЛЕЙКОПЛАСТЫ, ХРОМОПЛАСТЫ,

ХЛОРОПЛАСТЫ)

ЭНДОПЛАЗМАТИЧЕСКАЯ СЕТЬ

ЯДРО

ЛИЗОСОМЫ

КЛЕТОЧНЫЙ ЦЕНТР

КОМПЛЕКС ГОЛЬДЖИ

ЯДРЫШКО

МИТОХОНДРИИ

ВАКУОЛИ

РИБОСОМЫ

ЦИТОСКЕЛЕТ

ЖГУТИКИ И РЕСНИЧКИ





В процессе лекции заполнить таблицу №2

ЛЕКЦИЯ №2

продолжение темы

«Основные закономерности существования живого»

3. Подробный разбор строения и значения ядра

Главный тезис лекции ЯДРО КАК СИСТЕМА И ПОДСИСТЕМА КЛЕТКИ. Целостность и дискретность любой системы, взаимосвязь дискретных единиц между собой для выполнения функции целого.

ЯДРО (клеточное ядро), в биологии - обязательная часть клетки у многих одноклеточных и всех многоклеточных организмов. Размеры от 1 мкм (у некоторых простейших) до 1 мм (в яйцах некоторых рыб и земноводных). Все организмы нашей биосферы как одноклеточные, так и многоклеточные, подразделяются на эукариот- их клетки содержат ядро, и прокариот, клетки которых не имеют морфологически оформленного ядра. Термин «ядро» (лат. nucleus) впервые применил Р. Броун в 1833 году, когда описывал шарообразные структуры, наблюдаемые им в клетках растений.

Ядерная оболочка

Внутреннее пространство клеточного ядра отделено от цитоплазмы ядерной оболочкой, состоящей из двух мембран. Мембраны оболочки ядра сходны по строению с другими мембранными компонентами клетки и построены по тому же принципу: это тонкие липопротеидные пленки, состоящие из двойного слоя липидных молекул, в который встроены молекулы белков. Пространство между внутренней и внешней ядерными мембранами называется перинуклеарным. На поверхности внешней ядерной мембраны обычно располагается большое количество рибосом, и иногда удается наблюдать непосредственный переход этой мембраны в систему каналов гранулярной эндоплазматической сети клетки. Внутренняя ядерная мембрана связана с тонким волокнистым белковым слоем - ядерной ламиной, состоящей из белков ламинов. Густая сеть фибрилл ядерной ламины способна обеспечить целостность ядра, даже после растворения липидных мембран оболочки ядра в эксперименте. С внутренней стороны к ламине крепятся петли хроматина, заполняющего ядро.

Ядерная оболочка имеет отверстия диаметром около 90 нм, образующиеся за счет слияния внешней и внутренней ядерных мембран. Такие отверстия в оболочке ядра окружены сложными белковыми структурами, получившими название комплекса ядерной поры. Восемь белковых субъединиц, входящих в состав ядерной поры, располагаются вокруг перфорации ядерной оболочки в виде колец, диаметром около120 нм, наблюдаемых в электронный микроскоп с обеих сторон ядерной оболочки. Белковые субъединицы комплекса поры имеют выросты, направленные к центру поры, где иногда видна «центральная гранула» диаметром 10-40 нм. Размер ядерных пор и их структура стандартны для всех клеток эукариот. Число ядерных пор зависит от метаболической активности клеток: чем выше уровень синтетических процессов в клетке, тем больше пор на единицу площади поверхности клеточного ядра. В процессе ядерно-цитоплазматического транспорта ядерные поры функционируют как некое молекулярное сито, пропуская ионы и мелкие молекулы (сахара, нуклеотиды, АТФ и др.) пассивно, по градиенту концентрации, и осуществляя активный избирательный транспорт крупных молекул белков и рибонуклеопротеидов, то есть комплексов рибонуклеиновых кислот (РНК) с белками. Так, например, белки, транспортируемые в ядро из цитоплазмы, где они синтезируются, должны иметь определенные последовательности примерно из 50 аминокислот, (т. наз. NLS последовательности), «узнаваемые» комплексом ядерной поры. В этом случае комплекс ядерной поры, затрачивая энергию в виде АТФ, активно транслоцирует белок из цитоплазмы в ядро.

Хроматин

Клеточное ядро является вместилищем практически всей генетической информации клетки, поэтому основное содержимое клеточного ядра - это хроматин: комплекс дезоксирибонуклеиновой кислоты (ДНК) и различных белков. В ядре и, особенно, в митотических хромосомах, ДНК хроматина многократно свернута, упакована особым образом для достижения высокой степени компактизации. Ведь все длинные нити ДНК, общая длина которых составляет, например, у человека около 164 см, необходимо уложить в клеточное ядро, диаметр которого всего несколько микрометров. Эта задача решается последовательной упаковкой ДНК в хроматине с помощью специальных белков. Основная масса белков хроматина - это белки гистоны, входящие в состав глобулярных субъединиц хроматина, называемых нуклеосомами. Всего существует 5 видов белков гистонов. Нуклеосома представляет собой цилиндрическую частицу, состоящую из 8 молекул гистонов, диаметром около 10 нм, на которую «намотано» чуть менее двух витков нити молекулы ДНК. В электронном микроскопе такой искусственно деконденсированный хроматин выглядит как «бусины на нитке». В живом ядре клетки нуклеосомы плотно объединены между собой с помощью еще одного линкерного гистонового белка, образуя так называемую элементарную хроматиновую фибриллу, диаметром 30 нм. Другие белки, негистоновой природы, входящие в состав хроматина обеспечивают дальнейшую компактизацию, т. е. укладку, фибрилл хроматина, которая достигает своих максимальнах значений при делении клетки в митотических или мейотических хромосомах. В ядре клетки хроматин присутствует как в виде плотного конденсированного хроматина, в котором 30 нм элементарные фибриллы упакованы плотно, так и в виде гомогенного диффузного хроматина. Количественное соотношение этих двух видов хроматина зависит от характера метаболической активности клетки, степени ее дифференцированности. Так, например, ядра эритроцитов птиц, в которых не происходит активных процессов репликации и транскрипции, содержат практически только плотный конденсированный хроматин. Некоторая часть хроматина сохраняет свое компактное, конденсированное состояние в течение всего клеточного цикла - такой хроматин называется гетерохроматином и отличается от эухроматина рядом свойств.

Репликация и транскрипция

Клетки эукариот содержат обычно несколько хромосом (от двух до нескольких сотен), которые теряют в ядре (в интерфазе, т. е. между митотическоми делениями) клетки свою компактную форму, разрыхляются и заполняют объем ядра в виде хроматина. Несмотря на деконденсированное состояние, каждая хромосома занимает в ядре строго определенное положение и связана с ядерной оболочкой посредством ламины. Строго закреплены на внутренней поверхности оболочки ядра такие структуры хромосом, как центромеры и теломеры. На определенной стадии жизненного цикла клетки, в синтетическом периоде, происходит репликация, т. е. удвоение всей ДНК ядра, и хроматина становится в два раза больше. Белки, необходимые для этого процесса, поступают, конечно, из цитоплазмы через ядерные поры. Таким образом, клетка готовится к предстоящему клеточному делению - митозу, когда общее количество ДНК в ядре вернется к первоначальному уровню.

Реализация генетической информации, заключенной в ДНК в виде генов, начинается с транскрипции, т. е. с синтеза информационных РНК (и-РНК) - точных копий генов, по которым затем будут строиться в цитоплазме на рибосомах белки. Этот процесс проходит в различных точках в обьеме ядра, морфологически ничем не отличающихся от окружающего хроматина. Чаще всего удается наблюдать транскрипцию диффузного, т.е. деконденсированного хроматина.

Кроме хроматина, составляющего хромосомы, в ядрах эукариот обычно содержится одно или несколько ядрышек. Это плотные структуры, не имеющие собственной оболочки и представляющие собой скопления молекул другого типа РНК - рибосомной РНК (р-РНК) в комплексе с белками. Такие комплексы называют рибонуклеопротеидами (РНП). Ядрышки имеют стандартную морфологию и образуются в ядре после деления клетки вокруг постояннодействующих точек активного синтеза рибосомной РНК. Гены рибосомной РНК, в отличие от большинства других генов, кодирующих белки, содержатся в геноме в виде многочисленных копий. Эти копии, расположенные в молекуле ДНК тандемно, т. е. друг за другом, располагаются в определенных районах нескольких хромосом генома. Такие районы хромосом называют ядрышковыми организаторами. Морфологически в ядрышке с помощью электронного микроскопа можно выделить следующие 3 зоны: гомогенные компактные фибриллярные центры, содержащие ДНК ядрышковых организаторов; плотный фибриллярный компонент вокруг них, где идет транскрипция генов рибосомной РНК и массивный гранулярный компонент ядрышка, состоящий из частиц РНП - будущих рибосом. Эти гранулы РНП, образующиеся в ядрышке, транспортируются в цитоплазму и образуют рибосомы, осуществляющие синтез всех белков клетки. Третий основной тип клеточных РНК - мелкие транспортные РНК - транскрибируются в различных участках ядра и выходят в цитоплазму через ядерные поры. Там они, как известно, обеспечивают транспортировку аминокислот к рибосомам в процессе синтеза белков.

Ядерный белковый матрикс

Для осуществления процессов репликации, транскрипции, а также поддержания определенного положения хромосом в обьеме ядра существуют каркасные белковые структуры, называемае ядерным белковым матриксом. Такой матрикс состоит, по крайней мере из трех морфологических компонентов: периферического фиброзного слоя- ламины; внутреннего, или интерхроматинового матрикса ядра и матрикса ядрышка. Наблюдения показывают, что компоненты ядерного матрикса - это не жесткие застывшие структуры, они динамичны и могут сильно видоизменяться в зависимости от функциональных особенностей ядер. Показано, что белковый матрикс имеет множество точек прочного связывания с ДНК ядра, которая, в свою очередь, имеет специальные последовательности нуклеотидов, необходимые для этого.

Схеме 2

ЯОсновные закономерности существования живогоОсновные закономерности существования живогоОсновные закономерности существования живогоОсновные закономерности существования живогоДРО

ЯДРО - управляет и регулирует всеми процессами жизнедеятельности клетки

Таблица 3


1.

Основные закономерности существования живого

Отдельная клетка

2.

Основные закономерности существования живого

Отдельная часть целого

3.

Основные закономерности существования живого

Молекулы веществ - органических и неорганических, которые входят в состав и клеток, и организмов

Ядро - важнейшая составная часть клетки грибов, растений и жи­вотных. Клеточное ядро содержит ДНК, т. е. гены, и благодаря этому выполняет две главные функции:

1) хранение и воспроизведение ге­нетической информации

2) регуляцию процессов обмена веществ, протекающих в клетке.

Безъядерная клетка не может долго существовать, и ядро тоже не способно к самостоятельному существованию, поэтому цитоплазма и ядро образуют взаимозависимую систему.

Как правило, клетки содержат одно ядро. Нередко можно наблю­дать 2-3 ядра в одной клетке, например в клетках печени. Известны и многоядерные клетки, причем число ядер может

достигать несколь­ких десятков. Форма ядра зависит большей частью от формы клетки, она может быть и совершенно неправильной.

Ядро окружено оболочкой, которая состоит из двух мембран. На­ружная ядерная мембрана со стороны, обращенной в цитоплазму, по­крыта рибосомами, внутренняя мембрана гладкая. Ядерная оболоч­ка - часть мембранной системы клетки. Выросты внешней ядерной мембраны соединяются с каналами эндоплазматической сети, обра­зуя единую систему сообщающихся каналов. Обмен веществ между ядром и цитоплазмой осуществляется двумя основными путями. Во-первых, ядерная оболочка пронизана многочисленными порами, через которые происходит обмен молекулами между ядром и цито­плазмой. Во-вторых, вещества могут попадать из ядра в цитоплазму и обратно путем отшнуровывания впячиваний и выростов ядерной оболочки (рис. 2).

РОсновные закономерности существования живогоис. 2. Возможные пути обмена веществами между ядром и цитоплазмой:

1 - перемещение веществ через поры ядерной оболочки,

2 - впячивание цитоплаз­мы внутрь ядра,

3 - выпя­чивание ядерной оболочки в цитоплазму,

4 - продол­жение мембран ядерной оболочки в каналы эндоплаз­матической сети,

5 - часть каналов открывается в ок­ружающую (внеклеточную) среду

Несмотря на активный обмен между ядром и цитоплазмой, ядер­ная оболочка отграничивает ядерное содержимое от цитоплазмы, обеспечивая тем самым различия в их химическом составе. Это необ­ходимо для нормального функционирования ядерных структур.

Содержимое ядра представляет собой ядерный сок в гелеобразном состоянии, в котором

располагаются хроматин и одно или не­сколько ядрышек.

В живой клетке ядерный сок выглядит бесструктурной массой, заполняющей промежутки между структурами ядра. В состав ядер­ного сока входят различные белки (в том числе большинство фермен­тов ядра), свободные нуклеотиды, аминокислоты, а также продукты жизнедеятельности ядрышка и хроматина, транспортируемые затем из ядра в цитоплазму.

Хроматином (от греч. хрома - окраска, цвет) называют глыбки, гранулы и сетевидные структуры ядра, интенсивно окрашивающие­ся некоторыми красителями и отличающиеся по форме от ядрышка. Хроматин состоит из ДНК и белков и представляет собой спирализованные и уплотненные участки хромосом. Спирализованные участки хромосом в генетическом отношении неактивны. Свою специфиче­скую функцию - передачу генетической информации - могут осуществлять только деспирализованные - раскрученные участ­ки хромосом, которые в силу своей малой толщины не видны в све­товой микроскоп. В делящихся клетках все хромосомы сильно спирализуются, укорачиваются и приобретают компактные размеры и форму.

Форма хромосом зависит от положения так называемой первич­ной перетяжки, или центромеры, - области, к которой во время деления клетки (митоза) прикрепляются нити веретена деления. Центромера делит хромосому на два плеча, которые могут быть одинако­вой или разной длины .

Число хромосом не зависит от уровня организации вида и не все­гда указывает на его родственные связи: количество их может быть одинаковым у представителей очень далеких друг от друга система­тических групп - и может сильно различаться у близких по проис­хождению видов. Например, у таких разных организмов, как шим­панзе, таракан и перец, диплоидное число хромосом одинаково и равно 48; у человека - 46 хромосом, а у гораздо проще устроенного сазана - 104. Таким образом, характеристика хромосомного набора в целом видоспецифична, т. е. свойственна только одному какому-то виду организмов растений или животных.

Совокупность количественных (число и размеры) и качественных (форма) признаков хромосомного набора соматической клетки назы­вают кариотипом

Число хромосом в кариотипе большинства видов живых организ­мов четное. Это объясняется тем, что в каждой соматической клетке находятся две одинаковые по форме и размеру хромосомы: одна - из отцовского организма, вторая - из материнского.

Хромосомы, одинаковые по форме и размеру и несущие одинако­вые гены, называют гомологичными. Хромосомный набор соматиче­ской клетки, в котором каждая хромосома имеет себе пару, носит название двойного (или диплоидного) и обозначается 2л. Количество ДНК, соответствующее диплоидному набору хромосом, обозначают 2с. Из каждой пары гомологичных хромосом в половые клетки попа­дает только одна, и поэтому хромосомный набор гамет называют оди­нарным (или гаплоидным).

После завершения деления клетки хромосомы деспирализуются и в ядрах образовавшихся дочерних клеток снова становятся види­мыми только тонкая сеточка и глыбки хроматина.

Третья характерная для ядра клетки структура - ядрышко. Оно представляет собой плотное тельце, погруженное в ядерный сок. Ядрышки есть только в неделящихся ядрах, во время митоза они исчезают, а после завершения деления возникают вновь.

Ядрышко не является самостоятельной структурой ядра. Оно об­разуется вокруг участка хромосомы, в котором закодирована струк­тура рибосомальной РНК (рРНК). В нем содержится большое число молекул рРНК. Кроме накопления рРНК, в ядрышке происходит формирование рибосом, которые потом перемещаются в цитоплазму. Таким образом, ядрышко - это скопление рРНК и рибосом на раз­ных этапах формирования.

Повторить пройденный материал Лекции №1 по таблице №2, остановиться на строении и функциях ядра, ядерной оболочки, хроматине, репликации и транскрипции, ядерном белковом матриксе

Главный тезис лекции записать в тетради «ЯДРО КАК СИСТЕМА И ПОДСИСТЕМА КЛЕТКИ. Целостность и дискретность любой системы, взаимосвязь дискретных единиц между собой для выполнения функции целого».

Следя за текстом, подчеркните новые понятия, по окончании рассказа учителя называть главные функции органоидов.



Запись в инструктивной карте.






Запись в инструктивной карте.








Запись в инструктивной карте.



Совместно с учителем оформите в тетради схему №2, сделать обобщение по значению ядра в клетки




Оформить в тетради таблицу №3, на основе полученных знаний сделать обобщение, что не только клетка - система, но и ядро









Итак,

«Жизнь - это макромолекулярная система, для которой характерна определенная иерархическая организация, а также способность к воспроизведению, обмен веществ, тщательно регулируемый поток энергии, - являет собой распространяющийся центр упорядоченности в менее упорядоченной Вселенной»

А.А.Ляпунов

На данном высказывании, обобщите урок, обсудите степень достижения цели, поставленной вначале.

Домашнее задание

На примере данного алгоритма, составить схему на каждый органоид (схема 3):

  1. НАРУЖНАЯ ЦИТОПЛАЗМАТИЧЕСКАЯ МЕМБРАНА

  1. ЦИТОПЛАЗМАТИЧЕСКИЙ МАТРИКС

  2. ПЛАСТИДЫ (ЛЕЙКОПЛАСТЫ, ХРОМОПЛАСТЫ, ХЛОРОПЛАСТЫ)

  3. ЭНДОПЛАЗМАТИЧЕСКАЯ СЕТЬ

  4. ЯДРО

  5. ЛИЗОСОМЫ

  6. КЛЕТОЧНЫЙ ЦЕНТР

  7. КОМПЛЕКС ГОЛЬДЖИ

  8. ЯДРЫШКО

  9. МИТОХОНДРИИ

  10. ВАКУОЛИ

  11. РИБОСОМЫ

  12. ЦИТОСКЕЛЕТ

  13. ЖОсновные закономерности существования живогоГУТИКИ И РЕСНИЧКИ

Схема 3



Для выполнения домашнего задания используйте схему №3


© 2010-2018