Методические рекомендации по теме Человек и окружающая среда

Раздел Биология
Класс 11 класс
Тип Другие методич. материалы
Автор
Дата
Формат docx
Изображения Есть
For-Teacher.ru - все для учителя
Поделитесь с коллегами:

Методические рекомендации по теме Человек и окружающая средаМетодические рекомендации по теме Человек и окружающая средаМетодические рекомендации по теме Человек и окружающая средаМетодические рекомендации по теме Человек и окружающая средаМетодические рекомендации по теме Человек и окружающая средаМетодические рекомендации по теме Человек и окружающая средаМетодические рекомендации по теме Человек и окружающая средаМетодические рекомендации по теме Человек и окружающая средаМетодические рекомендации по теме Человек и окружающая средаМетодические рекомендации по теме Человек и окружающая средаМетодические рекомендации по теме Человек и окружающая средаМетодические рекомендации по теме Человек и окружающая средаМетодические рекомендации по теме Человек и окружающая средаМетодические рекомендации по теме Человек и окружающая средаМетодические рекомендации по теме Человек и окружающая средаМетодические рекомендации по теме Человек и окружающая средаМетодические рекомендации по теме Человек и окружающая средаМетодические рекомендации по теме Человек и окружающая средаМетодические рекомендации по теме Человек и окружающая средаМетодические рекомендации по теме Человек и окружающая средаМетодические рекомендации по теме Человек и окружающая средаФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПРАВОСУДИЯ»




Приволжский филиал




КАФЕДРА ОБЩЕОБРАЗОВАТЕЛЬНЫХ ДИСЦИПЛИН



ЕСТЕСТВОЗНАНИЕ


ЧЕЛОВЕК И ОКРУЖАЮЩАЯ СРЕДА





УЧЕБНО-МЕТОДИЧЕСКОЕ ПОСОБИЕ

для студентов очной формы обучения

факультета непрерывного образования



Специальность 030912 Право и организация социального обеспечения






Автор: Малышева Г.И. - преподаватель кафедры общеобразовательных дисциплин ПФ ФГБОУВО «РГУП»





Нижний Новгород

2015


Оглавление



Пояснительная записка

Программа курса «Естествознание» разработана для студентов факультета непрерывного образования по подготовке специалистов для судебной системы РГУП с учетом особенностей специальности «Право и организация социального обеспечения» среднего профессионального образования.

В третьем разделе рассматриваются открытые системы, к которым относят живые организмы: организацию и самоорганизацию в природе; уровни организации живого, современные представления об эволюции видов; основные законы генетики; вопросы, связанные с изучением нам молекулярном уровне процессов, обусловливающих жизнедеятельность.

Основные задачи этих разделов курса сводятся к формированию представлений о химической природе жизненных процессов, о современной биологической картине мира, о преемственности природных систем и о закономерностях их развития от неживых - к живым.

Цели и задачи курса

Глава5: Организмы и окружающая среда.

Учение В. И. Вернадского о биосфере. Структурная организация биосферы. Живое вещество биосферы. Популяция. Биогеоценозы. Круговорот веществ и энергия в биосфере. Геохимическая роль живых организмов на планете Земля. Природное равновесие. Роль человека в биосфере. Особенность преобразующей деятельности человека. Усиление воздействия человека на окружающую природу как причина возникновения экологических кризисов. Эрозия почв, процесс опустынивания. Загрязнение гидросферы и методы очистки воды. Загрязнение атмосферы и методы борьбы с ними. Парниковый эффект и его возможные последствия. Кислотные дожди. Озоновые дыры. Переработка отходов. Безотходные технологии. Глобальные экологические проблемы и пути их решения. Экологические проблемы, связанные с развитием энергетики, транспорта и средств связи. Воспитание экологического мышления, экологической морали. Формирование у человека «экологического стиля поведения». Личная ответственность человека за охрану окружающей среды.

Студент должен

знать/ понимать:

  • учение о биосфере, её структуру и функции;

  • биологический круговорот веществ в природе;

  • биогеоценозы и их свойства;

  • биоценозы, их смену и восстановление;

  • природные ресурсы и их использование;

  • последствия хозяйственной деятельности человека для окружающей среды;

  • возможности экологического образования;

  • законы Российской Федерации, охраняющие Жизнь.

уметь:

  • анализировать видовой состав биогеоценозов;

  • выявлять признаки приспособленности видов к совместному обитанию в экосистемах;

  • приводить примеры экспериментов и наблюдений, обосновывающих взаимосвязь компонентов экосистемы, влияние деятельности человека на экосистемы.

иметь представление:

  • о геохимической роли живых организмов на планете Земля;

  • об особенностях преобразующей деятельности человека;

  • об усилении воздействия человека на окружающую среду, что является причиной возникновения экологических кризисов;

  • об эрозии почвы и опустынивании;

  • о загрязнении гидросферы и методах очистки воды;

  • о загрязнении атмосферы и методах борьбы с ними;

  • о парниковом эффекте и его возможных последствиях;

  • о кислотных дождях, озоновых дырах, переработке отходов, безотходных технологиях;

  • о концепции устойчивого развития;

  • о прогнозах будущего человечества и альтернативах развития.

Учение В.И. Вернадского о биосфере

Одним из выдающихся естествоиспытателей, посвятивших себя изучению процессов, протекающих в биосфере, был академик Владимир Иванович Вернадский (1864-1945). Он является основоположником научного направления, названного им биогеохимией, которое легло в основу современного учения о биосфере.

Исследования В.И. Вернадского привели к осознанию роли жизни и живого вещества в геологических процессах. Облик Земли, ее атмосфера, осадочные породы, ландшафты - все это результат жизнедеятельности живых организмов. Особую роль в становлении лика нашей планеты Вернадский отводил человеку. Он представил деятельность человечества как стихийный природный процесс, истоки которого теряются в глубинах истории.

Будучи выдающимся теоретиком, В.И. Вернадский стоял у истоков таких новых и общепризнанных ныне наук, как радиогеология, биогеохимия, учение о биосфере и ноосфере, науковедение.

В 1926 г. В.И. Вернадский опубликовал книгу «Биосфера», которая ознаменовала собой рождение новой науки о природе и взаимосвязи с ней человека. Биосфера впервые показана как единая динамическая система, населенная и управляемая жизнью, живым веществом планеты: «Биосфера - организованная, определенная оболочка земной коры, сопряженная с жизнью». Ученый установил, что взаимодействие живого вещества с веществом косным есть часть большого механизма земной коры, благодаря которому происходят разнообразные геохимические и биогенные процессы, миграции атомов, осуществляется их участие в геологических и биологических циклах.

В.И. Вернадский подчеркивал, что биосфера является результатом геологического и биологического развития и взаимодействия косного и биогенного вещества. С одной стороны, это среда жизни, а с другой - результат жизнедеятельности. Специфика современной биосферы - это четко направленные потоки энергии и биогенный (связанный с деятельностью живых существ) круговорот веществ. Вернадский впервые показал, что химическое состояние наружной коры нашей планеты всецело находится под влиянием жизни и определяется живыми организмами, с деятельностью которых связан великий планетарный процесс - ми фация химических элементов в биосфере. Эволюция видов, приводящая к созданию форм жизни, устойчива в биосфере и должна идти в направлении увеличения биогенной миграции атомов.

В.И. Вернадский отмечал, что пределы биосферы обусловлены прежде всего полем существования жизни. На развитие жизни, а следовательно, на границы биосферы оказывают влияние многие факторы, и прежде всего наличие кислорода, углекислого газа, воды в ее жидкой фазе. Ограничивают область распространения жизни также слишком высокие или низкие температуры, элементы минерального питания. К ограничивающим факторам можно отнести и сверхсоленую среду (превышение концентрации солей в морской воде примерно в 10 раз). Лишены жизни подземные воды с концентрацией солей свыше 270 г/л.

Согласно представлениям Вернадского, биосфера состоит из нескольких разнородных компонентов. Главный и основной - это живое вещество, совокупность всех живых организмов, населяющих Землю. В процессе жизнедеятельности живые организмы взаимодействуют с неживым (абиогенным) - косным веществом. Такое вещество образуется в результате процессов, в которых живые организмы не принимают участия, например, изверженные горные породы. Следующий компонент - биогенное вещество, создаваемое и перерабатываемое живыми организмами (газы атмосферы, каменный уголь, нефть, торф, известняк, мел, лесная подстилка, почвенный гумус и т.д.). Еше одно составляющее биосферы -биокосное вещество - результат совместной деятельности живых организмов (вода, почва, кора выветривания, осадочные породы, глинистые материалы) и косных (абиогенных) процессов.

Косное вещество резко преобладает по массе и объему. Живое вещество по массе составляет ничтожную часть нашей планеты: примерно 0,25 % биосферы. Причем «масса живого вещества остается в основном постоянной и определяется лучистой солнечной энергией заселения планеты». В настоящее время этот вывод Вернадского называется законом константности.

В.И. Вернадский сформулировал пять постулатов, относящихся к функции биосферы.

Первый постулат: «С самого начала биосферы жизнь, в нее входящая, должна была быть уже сложным телом, а не однородным веществом, поскольку связанные с жизнью ее биогеохимические функции по разнообразию и сложности не могут быть уделом какой-нибудь одной формы жизни». Другими словами, первобытная биосфера изначально отличалась богатым функциональным разнообразием.

Второй постулат: «Организмы проявляются не единично, а в массовом эффекте... Первое появление жизни... должно было произойти не в виде появления одного какого-нибудь вида организмов, а их совокупности, отвечающей геохимической функции жизни. Должны были сразу появиться биоценозы».

Третий постулат: «В общем монолите жизни, как бы ни менялись его составные части, их химические функции не могли быть затронуты морфологическим изменением». То есть первичная биосфера была представлена «совокупностями» организмов типа биоценозов, которые и были главной «действующей силой» геохимических преобразований. Морфологические изменения «совокупностей» не отражались на «химических функциях» этих компонентов.

Четвертый постулат: «Живые организмы... своим дыханием, своим питанием, своим метаболизмом... непрерывной сменой поколений... порождают одно из грандиознейших планетных явлений... - миграцию химических элементов в биосфере», поэтому «на всем протяжении протекших миллионов лет мы видим образование тех же минералов, во все времена шли те же циклы химических элементов, какие мы видим и сейчас».

Пятый постулат: «Все без исключения функции живого вещества в биосфере могут быть исполнены простейшими одноклеточными организмами».

Разрабатывая учение о биосфере, В.И. Вернадский пришел к выводу, что главным трансформатором космической энергии является зеленое вещество растений. Только они способны поглощать энергию солнечного излучения и синтезировать первичные органические соединения.

К понятию «биосфера» (без самого термина) еще в начале XIX в. подошел Ламарк. Позднее (1863 г.) французский исследователь Реют применил термин «биосфера» для обозначения области распространения жизни на земной поверхности. В 1875 г. австрийский геолог Зюсс назвал биосферой особую оболочку Земли, включающую совокупность всех организмов, противопоставив ее другим земным оболочкам. Начиная с работ Зюсса, биосфера трактуется как совокупность населяющих Землю организмов.

Законченное учение о биосфере было создано нашим соотечественником академиком Владимиром Ивановичем Вернадским. Основные идеи В. И. Вернадского в учении о биосфере сложились в начале XX в. Он излагал их в лекциях в Париже. В 1926 г. его идеи о биосфере были сформулированы в книге «Биосфера», состоящей из двух очерков: «Биосфера и космос» и «Область жизни». Позднее эти же идеи были развиты в большой монографии «Химическое строение биосферы Земли и ее окружения», которая, к сожалению, была опубликована только через 20 лет после его смерти.

Прежде всего В.И. Вернадский определил пространство, которое охватывает биосфера Земли, - вся гидросфера до максимальных глубин океанов, верхняя часть литосферы материков до глубины около 3 км и нижняя часть атмосферы до верхней границы тропосферы. Он ввел в науку интегральное понятие живое вещество и стал называть биосферой область существования на Земле «живого вещества», представляющего собой сложную совокупность микроорганизмов, водорослей, грибов, растений и животных. По существу, речь идет о единой термодинамической оболочке (пространстве), в которой сосредоточена жизнь и осуществляется постоянное взаимодействие всего живого с неорганическими условиями среды (пленка жизни). Он показал, что биосфера отличается от других сфер Земли тем, что внутри нее происходит геологическая деятельность всех живых организмов. Живые организмы, преобразуя солнечную энергию, являются мошной силой, влияющей на геологические процессы.

Специфическая черта биосферы как особой оболочки Земли - непрерывно происходящий в ней кругооборот веществ, регулируемый деятельностью живых организмов. По мнению В.И. Вернадского, в прошлом явно недооценивали вклад живых организмов в энергетику биосферы и их влияние на неживые тела. Хотя живое вещество по объему и массе составляет незначительную часть биосферы, но оно играет основную роль в геологических процессах, связанных с изменением облика нашей планеты.

Занимаясь созданной им наукой биохимией, изучающей распределение химических элементов по поверхности планеты, В.И. Вернадский пришел к выводу, что нет практически ни одного элемента из таблицы Менделеева, который не включался бы в живое вещество. Он сформулировал три важных биогеохимических принципа:

  • Биогенная миграция химических элементов в биосфере всегда стремится к своему максимальному проявлению. Этот принцип в наши человеком дни нарушен.

  • Эволюция видов в ходе геологического времени, приводящая к созданию устойчивых в биосфере форм жизни, происходит в направлении, усиливающем биогенную миграцию атомов.

  • Живое вещество находится в непрерывном химическом обмене с окружающей его средой, создающейся и поддерживающейся на Земле космической энергией Солнца. Вследствие нарушения двух первых принципов космические воздействия из поддерживающих биосферу могут превратиться в разрушающие ее факторы.

Перечисленные геохимические принципы соотносятся со следующими важными выводами В.И. Вернадского: каждый организм может существовать только при условии постоянной тесной связи с другими организмами и неживой природой; жизнь со всеми ее проявлениями произвела глубокие изменения на нашей планете.

Исходной основой существования биосферы и происходящих в ней биохимических процессов является астрономическое положение нашей планеты и, в первую очередь, ее расстояние от Солнца и наклон земной оси к плоскости земной орбиты. Это пространственное расположение Земли определяет в основном климат Земли, а последний, в свою очередь, - жизненные циклы всех существующих на ней организмов. Солнце является основным источником энергии биосферы и регулятором всех геологических, химических и биологических процессов на Земле.

Живое вещество

Главная идея В.И. Вернадского заключается в том, что высшая фаза развития материи на Земле - жизнь - определяет и подчиняет себе другие планетарные процессы. По этому поводу он писал, что можно без преувеличения утверждать, что химическое состояние наружной коры нашей планеты, биосферы, всецело находится под влиянием жизни и определяется живыми организмами.

Если равномерно распределить все живые организмы на поверхности Земли, то они образуют пленку толщиной 5 мм. Несмотря на это, роль живого вещества в истории Земли не меньше роли геологических процессов. Вся масса живого вещества, которое было на Земле, например, в течение 1 млрд лет, уже превышает массу земной коры.

Количественной характеристикой живого вещества является суммарное количество биомассы. В.И. Вернадский, проведя анализы и расчеты, пришел к выводу, что количество биомассы составляет от 1000 до 10 ООО трлн т. Оказалось также, что поверхность Земли составляет несколько меньше 0,0001 % поверхности Солнца, но зеленая площадь ее трансформационного аппарата, т.е. поверхность листьев деревьев, стеблей трав и зеленых водорослей, дает числа совершенно иного порядка - в различные периоды года она колеблется от 0,86 до 4,20% поверхности Солнца, чем и объясняется большая суммарная энергия биосферы. В последние годы аналогичные подсчеты с применением новейшей аппаратуры провел красноярский биофизик И. Гительзон и подтвердил порядок цифр, более полувека назад определенный В.И. Вернадским.

Значительное место в работах В.И. Вернадского по биосфере отведено зеленому живому веществу растений, поскольку только оно автотрофно и способно аккумулировать лучистую энергию Солнца, образуя с ее помощью первичные органические соединения.

Значительная часть энергии живого вещества идет на образование в биосфере новых вадозных (неизвестных вне ее) минералов, а часть захороняется в виде органического вещества, образуя, в конечном счете, залежи бурого и каменного угля, горючих сланцев, нефти и газа. «Мы имеем здесь дело, - писал В.И. Вернадский, - с новым процессом, с медленным проникновением внутрь планеты лучистой энергии Солнца, достигшей поверхности Земли. Этим путем живое вещество меняет биосферу и земную кору. Оно непрерывно оставляет в ней часть прошедших через него химических элементов, создавая огромные толщи неведомых, помимо него, вадозных минералов или пронизывая тончайшей пылыо своих остатков косную материю биосферы».

По мнению ученого, земная кора представляет собой в основном остатки былых биосфер. Даже гранитно-гнейсовый ее слой образовался в результате метаморфизма и переплавления пород, возникших когда-то под воздействием живого вещества. Только базальты и другие основные магматические породы он считал глубинными и по своему генезису не связанными с биосферой.

В учении о биосфере понятие «живое вещество» является основополагающим. Живые организмы превращают космическую лучистую энергию в земную, химическую и создают бесконечное разнообразие нашего мира. Своим дыханием, питанием, метаболизмом, смертью и разложением, длящимся сотни миллионов лет, непрерывной сменой поколений они порождают существующий только в биосфере грандиознейший планетарный процесс - миграцию химических элементов.

Живое вещество, согласно теории В. И. Вернадского, - биогеохимический фактор планетарного масштаба, под воздействием которого преобразуется как окружающая абиотическая среда, так и сами живые организмы. Во всем пространстве биосферы происходит порожденное жизнью непрестанное перемещение молекул. Жизнь решающим образом воздействует на распределение, миграцию и рассеяние химических элементов, определяя судьбу азота, калия, кальция, кислорода, магния, стронция, углерода, фосфора, серы и других элементов.

Эпохи развития жизни: протерозой, палеозой, мезозой, кайнозой отражают не только формы жизни на Земле, но и ее геологическую летопись, ее планетарную судьбу.

В учение о биосфере органическое вещество наряду с энергией радиоактивного распада рассматривается как носитель свободной энергии. Жизнь же рассматривается не как механическая сумма индивидуумов или видов, а как по сути - единый процесс, охватывающий все вещество верхнего слоя планеты.

Живое вещество изменялось в течение всех геологических эпох и периодов. Следовательно, как отмечал В.И. Вернадский, современное живое вещество генетически связано с живым веществом всех прошлых геологических эпох. В то же время в рамках значительных геологических отрезков времени количество живого вещества не подвержено заметным изменениям. Эта закономерность была сформулирована ученым как константное количество живого вещества биосферы (для данного геологического периода).

Живое вещество выполняет в биосфере следующие биогеохимические функции: газовую - поглощает и выделяет газы; окислительно-восстановительную - окисляет, например, углеводы до углекислого газа и восстанавливает его до углеводов; концентрационную - организмы-концентраторы накапливают в своих телах и скелетах азот, фосфор, кремний, кальций, магний. В результате выполнения этих функций живое вещество биосферы из минеральной основы создает природные воды и почвы, оно создало в прошлом и поддерживает в состоянии равновесия атмосферу.

При участии живого вещества идет процесс выветривания, и горные породы включаются в геохимические процессы.

Газовая и окислительно-восстановительная функции живого вещества тесно связаны с процессами фотосинтеза и дыхания. В результате биосинтеза органических веществ автотрофными организмами было извлечено из древней атмосферы огромное количество углекислого газа. По мере увеличения биомассы зеленых растений изменился газовый состав атмосферы - уменьшилось содержание углекислого газа, и увеличилась концентрация кислорода. Весь кислород атмосферы образован в результате процессов жизнедеятельности автотрофных организмов. Живое вещество качественно изменило газовый состав атмосферы - геологической оболочки Земли. В свою очередь, кислород используется организмами для процесса дыхания, в результате чего в атмосферу вновь поступает углекислый газ.

Таким образом, живые организмы создали в прошлом и поддерживают миллионы лет атмосферу нашей планеты. Увеличение концентрации кислорода в атмосфере планеты повлияло на скорость и интенсивность окислительно-восстановительных реакций в литосфере.

Многие микроорганизмы непосредственно участвуют в окислении железа, что приводит к образованию осадочных железных руд, или к восстановлению сульфатов с образованием биогенных месторождений серы. Несмотря на то, что в состав живых организмов входят те же химические элементы, соединения которых образуют атмосферу, гидросферу и литосферу, организмы не повторяют полностью химический состав среды.

Живое вещество, активно выполняя концентрационную функцию, выбирает из среды обитания те химические элементы и в таком количестве, которое ему необходимо. Благодаря осуществлению концентрационной функции живые организмы создали многие осадочные породы, например, залежи мела и известняка.

В биосфере, как и в каждой экосистеме, постоянно осуществляется кругооборот химических элементов. Таким образом, живое вещество биосферы, выполняя геохимические функции, создает и поддерживает равновесие биосферы.

Границы биосферы

Живое вещество имеет количественные характеристики, его можно изучать, используя математические законы.

Количество живого вещества в биосфере (биомасса) - величина постоянная или мало изменяющаяся с течением времени. Во все геологические эпохи на Земле количество живого вещества было практически одинаковым. Ученый подчеркивал, что современное живое вещество генетически родственно живому веществу прошлых геологических эпох.

Под косным веществом В.И. Вернадский понимал такие вещества биосферы, в создании которых живые организмы не участвуют. Это, например, газы, твердые частицы и водяные пары, выбрасываемые вулканами, гейзерами.

Кроме живого и косного веществ, в состав биосферы входят:

неживое биогенное вещество, которое образовано живым веществом современной и прошлых геологических эпох (ископаемые остатки организмов, нефть, уголь, газы атмосферы, озерный ил - сапропель, осадочные породы, например, известняки);

биокосное вещество, которое создавалось одновременно и живыми организмами и косным веществом (например, почва, вода обитаемых водоемов, глинистые минералы).

Границы биосферы совпадают с границами распространения живых организмов в оболочках Земли, что определяется наличием условий существования жизни (благоприятный температурный режим, уровень радиации, достаточное количество воды, минеральных веществ, кислорода, углекислого газа). Биосфера охватывает всю поверхность суши, а также океаны, моря и ту часть недр Земли, где находятся породы, созданные в процессе жизнедеятельности живых организмов. Иначе говоря, биосфера - это часть литосферы, атмосферы, гидросферы, заселенная живым веществом.

Верхняя граница биосферы определяется озоновым экраном, представляющим собой тонкий слой (2-4 мм) газа озона . Роль озонового слоя в биосфере велика: он задерживает губительные для живого ультрафиолетовые лучи солнечного света. Этот слой расположен на высотах 16 - 20 км.

Нижняя граница биосферы неровная. К примеру, в литосфере живые организмы или продукты их жизнедеятельности можно встретить на глубине 3,5-7,5 км, а в Мировом океане организмы - на глубине 10 - 11 км.

Нижняя граница на суше связана с областями "былых биосфер" - так В.И. Вернадский назвал сохранившиеся остатки биосфер прошлых геологических эпох (накопления осадочных пород, углей, горючих сланцев и др.). "Былые биосферы" служат доказательством длительной эволюции биосферы Земли.

Ученый отмечал, что живое вещество распределено в биосфере неравномерно. Основная его масса сконцентрирована в приповерхностном слое суши толщиной 50-100 м и в приповерхностной толще воды (10-20 м). Здесь находится более 90% биомассы Земли. Но и в приповерхностном слое имеются пространства, густо заселенные живыми организмами (тропики и субтропики, теплые моря), и менее заселенные территории (пустыни, высокогорья, арктические и антарктические области). Для остальных территорий биосферы характерно, по словам В.И. Вернадского, "разрежение живого вещества".

Тем не менее, в пределах биосферы нет абсолютно безжизненных пространств. Даже в самых суровых условиях обитания можно найти бактерии и другие микроорганизмы. В.И. Вернадский высказал идею о "всюдности жизни", живое вещество способно "растекаться" по поверхности планеты; оно с огромной скоростью захватывает все незанятые участки биосферы, что обусловливает "давление жизни" на неживую природу.

Функции живого вещества

Одна из основных заслуг В.И. Вернадского состоит в том, что он впервые обратил внимание на роль живых организмов как мощного геологического фактора, на то, что живое вещество выполняет в биосфере различные биогеохимические функции. Благодаря этому обеспечиваются круговорот веществ и превращение энергии и, в итоге, целостность, постоянство биосферы, ее устойчивое существование. Важнейшими функциями являются энергетическая, газовая, окислительно-восстановительная, концентрационная.

Энергетическая функция заключается в накоплении и преобразовании растениями энергии Солнца (бактерии-хемоавтотрофы преобразуют энергию химических связей) и передаче ее по пищевым цепям: от продуцентов - к консументам и, далее, - к редуцентам. При этом энергия постепенно рассеивается, но часть ее вместе с остатками организмов переходит в ископаемое состояние, "консервируется" в земной коре, образуя запасы нефти, угля и др.

В осуществлении газовой функции ведущая роль принадлежит зеленым растениям, которые в процессе фотосинтеза поглощают углекислый газ и выделяют в атмосферу кислород. В то же время, большинство живых организмов (и растения в том числе) в процессе дыхания используют кислород, выделяя в атмосферу углекислый газ. Таким образом, участвуя в обменных процессах, живое вещество поддерживает на определенном уровне газовый состав атмосферы.

Окислительно-восстановительная функция тесно связана с энергетической. Существуют микроорганизмы, которые в процессе жизнедеятельности окисляют или восстанавливают различные соединения, получая при этом энергию для жизненных процессов. Велико их значение для образования многих полезных ископаемых. Например, деятельность железобактерий по окислению железа привела к образованию таких осадочных пород как железные руды; серобактерии, восстанавливая сульфаты, образовали месторождения серы.

Концентрационная функция заключается в способности живых организмов накапливать различные химические элементы. Например, осоки и хвощи содержат много кремния, морская капуста и щавель - йод и кальций. В скелетах позвоночных животных содержится большое количество фосфора, кальция, магния. Осуществление данной функции способствовало образованию залежей известняка, мела, торфа, угля, нефти.

Эволюция биосферы. В.И. Вернадский в своих работах подчеркивал, что история возникновения и эволюция биосферы - это история возникновения жизни на Земле. Развитие биосферы идет вместе с эволюцией органического мира - изменяется состав ее компонентов, расширяются границы и т. д.

Живое вещество эволюционирует в сторону усложнения уровня организации, уменьшения прямой зависимости от среды обитания, усовершенствования способов ориентации и передвижения в пространстве.

Перенеся идеи физики о неразрывности пространства и времени на явления природы, В.И. Вернадский объяснил направленность эволюции биосферы: она ограничена пространством, что определяется телом планеты, и направлена в сторону прогрессивного развития, так как необходимо приобрести свойства, которые позволят это ограниченное пространство использовать по возможности максимально.

Особое внимание в своих трудах ученый уделял возрастающему влиянию человека на ход эволюции биосферы. Вернадский подчеркивал, что человек разумный - невиданная по своим масштабам геохимическая сила, которая увеличивает свое влияние по мере развития научной мысли. Еще в 20-х годах прошлого века ученый сумел предугадать многие тенденции воздействия человека на природу. Его теоретические положения о биосфере и месте в ней человека - блестящий пример научного обобщения.

Классификация экологических факторов среды

Абиотические

Биотические

Климатические: свет, температура, влага, движение воздуха, давление

Фитогенные: растительные организмы

Эдафогенные («эдафос» - почва): механический состав, влагоемкость, воздухопроницаемость, плотность

Зоогенные: животные

Орографические: рельеф, высота над уровнем моря, экспозиция склона

Микробиогенные: вирусы, простейшие, бактерии, риккетсии


Круговороты веществ

Экологические компоненты обеспечивают круговорот веществ и закономерное прохождение потока энергии в биосфере. Энергия Солнца, попадая на растения, создает предпосылки для осуществления фотосинтеза и создания органического вещества с привлечением газов атмосферы и минеральных веществ из почвосубстрата. Органическое вещество растений потребляется животными и паразитическими растениями и, как растительное, так и животное, оно вновь разлагается после смерти микроорганизмами (редуцентами) на простые соединения (соли и газы), возвращающиеся, таким образом, в атмосферу и почвогрунты. Так поддерживается равновесие в системе и происходит замыкание цикла круговоротов в природе.

В то же время все экологические компоненты являются природными ресурсами, качество которых определяет качество жизни человека, а антропогенное нарушение взаимодействий между ними может это качество снизить.

В реальных экосистемах круговорот обычно бывает незамкнутым, так как часть веществ уходит за пределы экосистемы, а часть поступает извне. Но в целом принцип круговорота в природе сохраняется. Более простые экосистемы объединены в общую планетарную экосистему (биосферу), в которой круговорот веществ проявляется в полной мере - жизнь на Земле возникла миллиарды лет назад, и если бы не было замкнутого потока необходимых для жизни веществ, их запасы давно исчерпались бы и жизнь прекратилась.

Вмешательство человека отрицательно влияет на процессы круговорота. Например, вырубка лесов или нарушение процессов ассимиляции веществ растениями в результате загрязнений приводят к снижению интенсивности усвоения углерода. Избыток органических элементов в воде, возникающий под действием промышленных стоков, вызывает загнивание водоемов и перерасход растворенного в воде кислорода, что исключает возможность развития здесь аэробных (потребляющих кислород) бактерий. Сжигая ископаемое топливо, фиксируя атмосферный азот в продуктах производства, связывая фосфор в синтетических моющих средствах человек нарушает круговорот этих элементов.

Круговорот веществ в природе подразумевает общую согласованность места, времени и скоростей процессов, идущих на разных уровнях - от популяции до биосферы. Такую согласованность явлений природы называют экологическим равновесием; это равновесие подвижное, динамическое.

В экологической системе (без вмешательства человека) поддерживается равновесие, исключающее необратимое уничтожение тех или иных звеньев в трофических цепях. Человек в процессе своей деятельности постоянно воздействует на экосистему в целом, а также на ее отдельные звенья. Это может проявляться в виде введения в экосистему новых компонентов, в том числе загрязняющих веществ, либо уничтожения отдельных компонентов (отстрел животных, вырубка лесов и т.д.). Не всегда и не сразу эти воздействия ведут к распаду всей системы, нарушению ее стабильности. Но сохранение системы не означает, что она осталась неизменной. Система трансформируется, и оценить количество и направление возникших изменений крайне сложно.

Естественные регуляторы неспособны сохранить биоценоз при резких антропогенных воздействиях. За разрушением отдельных экосистем может последовать и разрушение биосферы в целом или существенное снижение ее продуктивности.

Ноосфера

В результате производственной деятельности человека возник новый процесс обмена веществ и энергией между природой и обществом (при сохранении биологического обмена) - антропогенный обмен, который существенно изменяет общепланетарный круговорот веществ, резко ускоряя его. Антропогенный обмен отличается от биотического круговорота своей незамкнутостью, он носит открытый характер. На входе антропогенного обмена находятся природные ресурсы, а на выходе - производственные и бытовые отходы. Экологическое несовершенство антропогенного обмена заключается в том, что коэффициент полезного использования природных ресурсов, как правило, чрезвычайно низок, а отходы производства загрязняют природную среду. Более того, многие из них не разлагаются до природного состояния. Масштабы и скорость антропогенного обмена резко возрастают, вызывая заметное напряжение в биосфере.

На последнем этапе развития биосферы в мощную силу превратилась человеческая деятельность, необратимо и целенаправленно меняющая природную среду. Сформировалась биотехносфера - следствие социального и научно-технического развития человечества. Взаимоотношения между природой и человеком во многих случаях несбалансированы, ведут к угнетению окружающей среды (в частности, разрушению среды архитектурно-исторической), что может привести к деградации биосферы.

Сформированную строителями новую систему можно назвать природно-техногенной (ПТС). Процесс ее формирования, если он не откорректирован в соответствии с экологическими компонентами (другими словами, в соответствии с законами развития экосистемы), как правило, приводит к нарушению естественных взаимодействий в природной системе, в основном, за счет привнесения в нее «чуждых» компонентов, которые могут быть восприняты экосистемой как загрязнители. Недоучет этих взаимодействий при осуществлении строительной деятельности недопустим, так как он приводит к снижению качества строительства и ухудшает качество среды проживания.

Экологически необоснованная деятельность строителей и реставраторов наносит невосполнимый ущерб природному ландшафту и информационному компоненту экосистемы. Как отмечает Пруцын О.И., происходит разрушение архитектурно-исторической среды: «Нарушается силуэтность пространственных композиций, гармоничная соподчиненность всего построения, ансамблевое единство. Силуэтность и пропорциональность, достигнутые в историческом периоде, необходимо полностью сохранить, ибо, благодаря классическим соотношениям они могут легко сочетаться с любой предстоящей застройкой».

Не следует забывать, что ландшафт - это всеобъемлющая и вневременная реальность, в которой существовал человек в доурбанистическую эпоху. Именно безукоризненное чувство ландшафта было присуще людям в прошлые века, когда постройки срастались с природным окружением. Архитектура прошлого и сегодня представляет собой школу мастерства зодчества и градостроительства на Руси. Уже начиная с XI в. власти города обязывали застройщиков соблюдать градостроительные правила и законы, регулирующие взаимосвязь между архитектурой и природой. На Руси с XI в. действовал византийский «Закон градский», записанный в кормчих книгах**. Среди его положений были, например, такие: «Только тогда здание можно увидеть по-настоящему, когда оно располагается на стройном месте. Прежде чем строить, осмотри внимательно местность. Выбери такое место, чтобы здание не мешало природе». Или такие: «...повелеваем, чтобы обновляющий ветхий двор не отнимал у соседа света и не лишал его их вида, не изменял первоначального образа»; «...не загораживай насильственно вида соседу, если он прямо видит море, стоя на своем дворе». И сегодня в строительной и реставрационной деятельности основополагающей должна стать «природная» логика.

На этапе развития разумного отношения к сохранению природы должно произойти постепенное превращение биотехносферы в ноосферу - сферу разума, которая, по В.И Вернадскому, является неизбежным и закономерным этапом развития биосферы.

Доказательством начала такого превращения является принятая ООН концепция «устойчивого развития», «устойчивого строительства», «устойчивой реставрации», напрямую связанная с понятием «устойчивость экологическая». Последняя подразумевает способность экосистемы сохранять свою структуру и функциональные особенности при воздействии внешних факторов. Нередко «устойчивость экологическая» рассматривается как синоним экологической стабильности.

Круговорот воды

Вода находится в постоянном движении. Испаряясь с поверхности водоемов, почвы, растений, вода накапливается в атмосфере и, рано или поздно, выпадает в виде осадков, пополняя запасы в океанах, реках, озерах и т.п. Таким образом, количество воды на Земле не изменяется, она только меняет свои формы - это и есть круговорот воды в природе. Из всех выпадающих осадков 80% попадает непосредственно в океан. Для нас же наибольший интерес представляют оставшиеся 20%, выпадающие на суше, так как большинство используемых человеком источников воды пополняется именно за счет этого вида осадков. Упрощенно говоря, у воды, выпавшей на суше, есть два пути.Методические рекомендации по теме Человек и окружающая среда

Либо она, собираясь в ручейки, речушки и реки, попадает в результате в озера и водохранилища - так называемые открытые (или поверхностные) источники водозабора. Либо вода, просачиваясь через почву и подпочвенные слои, пополняет запасы грунтовых вод. Поверхностные и грунтовые воды и составляют два основных источника водоснабжения. Оба этих водных ресурса взаимосвязаны и имеют как свои преимущества, так и недостатки в качестве источника питьевой воды.

Круговорот воды является одним из грандиозных процессов на поверхности земного шара. Он играет главную роль в связывании геологического и биотического круговоротов. В биосфере вода, непрерывно переходя из одного состояния в другое, совершает малый и большой круговороты. Испарение воды с поверхности океана, конденсация водяного пара в атмосфере и выпадение осадков на поверхность океана образуют малый круговорот. Если же водяной пар переносится воздушными течениями на сушу, круговорот становится значительно сложнее. В этом случае часть осадков испаряется и поступает обратно в атмосферу, другая - питает реки и водоемы, но в итоге вновь возвращается в океан речным и подземным стоком, завершая тем самым большой круговорот. Важное свойство круговорота воды заключается в том, что он, взаимодействуя с литосферой, атмосферой и живым веществом, связывает воедино все части гидросферы: океан, реки, почвенную влагу, подземные воды и атмосферную влагу. Вода - важнейший компонент всего живого. Грунтовые воды, проникая сквозь ткани растения в процессе транспирации, привносят минеральные соли, необходимые для жизнедеятельности самих растений. Наиболее замедленной частью круговорота воды является деятельность полярных ледников, что отражают медленное движение и скорейшее таяние ледниковых масс. Наибольшей активностью обмена после атмосферной влаги отличаются речные воды, которые сменяются в среднем каждые 11 дней. Чрезвычайно быстрая возобновляемость основных источников пресных вод и опреснение вод в процессе круговорота являются отражением глобального процесса динамики вод на земном шаре.

Круговорот углерода

Углерод в биосфере часто представлен наиболее подвижной формой - углекислым газом. Источником первичной углекислоты биосферы является вулканическая деятельность, связанная с вековой дегазацией мантии и нижних горизонтов земной коры. Миграция углекислого газа в биосфере Земли протекает двумя путями. Первый путь заключается в поглощении его в процессе фотосинтеза с образованием органических веществ и в последующем захоронении их в литосфере в виде торфа, угля, горных сланцев, рассеянной органики, осадочных горных пород. Так, в далекие геологические эпохи сотни миллионов лет назад значительная часть фотосинтезируемого органического вещества не использовалась ни консументами, ни редуцентами, а накапливалась и постепенно погребалась под различными минеральными осадками. Находясь в породах миллионы лет, этот детрит под действием высоких температур и давления (процесс метаморфизации) превращался в нефть, природный газ и уголь, во что именно - зависело от исходного материала, продолжительности и условий пребывания в породах. Теперь мы в огромных количествах добываем это ископаемое топливо для обеспечения потребностей в энергии, а сжигая его, в определенном смысле завершаем круговорот углерода. Если бы ни этот процесс в истории планеты, вероятно, человечество имело бы сейчас совсем другие источники энергии, а может быть и совсем другое направление развития цивилизации. Методические рекомендации по теме Человек и окружающая среда

По второму пути миграция углерода осуществляется созданием карбонатной системы в различных водоемах, где CO2 переходит в H2CO3, HCO31-, CO32-. Затем с помощью растворенного в воде кальция (реже магния) происходит осаждение карбонатов CaCO3 биогенным и абиогенным путями. Возникают мощные толщи известняков. Наряду с этим большим круговоротом углерода существует еще ряд малых его круговоротов на поверхности суши и в океане. В пределах суши, где имеется растительность, углекислый газ атмосферы поглощается в процессе фотосинтеза в дневное время. В ночное время часть его выделяется растениями во внешнюю среду. С гибелью растений и животных на поверхности происходит окисление органических веществ с образованием CO2. Особое место в современном круговороте веществ занимает массовое сжигание органических веществ и постепенное возрастание содержания углекислого газа в атмосфере, связанное с ростом промышленного производства и транспорта.

Круговорот кислородаМетодические рекомендации по теме Человек и окружающая среда

Кислород - наиболее активный газ. В пределах биосферы происходит быстрый обмен кислорода среды с живыми организмами или их остатками после гибели. В составе земной атмосферы кислород занимает второе место после азота. Господствующей формой нахождения кислорода в атмосфере является молекула О2. Круговорот кислорода в биосфере весьма сложен, поскольку он вступает во множество химических соединений минерального и органического миров. Свободный кислород современной земной атмосферы является побочным продуктом процесса фотосинтеза зеленых растений и его общее количество отражает баланс между продуцированием кислорода и процессами окисления и гниения различных веществ. В истории биосферы Земли наступило такое время, когда количество свободного кислорода достигло определенного уровня и оказалось сбалансированным таким образом, что количество выделяемого кислорода стало равным количеству поглощаемого кислорода.

Круговорот азота

При гниении органических веществ значительная часть содержащегося в них азота превращается в аммиак, который под влиянием живущих в почве трифицирующих бактерий окисляется затем в азотную кислоту. Последняя, вступая в реакцию с находящимися в почве карбонатами, например с карбонатом кальция СаСОз, образует нитраты:Методические рекомендации по теме Человек и окружающая среда

2HN0з + СаСОз = Са(NОз)2 +Н0Н

Некоторая же часть азота всегда выделяется при гниении в свободном виде в атмосферу. Свободный азот выделяется также при горении органических веществ, при сжигании дров, каменного угля, торфа. Кроме того, существуют бактерии, которые при .недостаточном доступе воздуха могут отнимать кислород от нитратов, разрушая их с выделением свободного азота. Деятельность этих де ни трифицирующих бактерий приводит к тому, что часть азота из доступной для зеленых растений формы (нитраты) переходит в недоступную (свободный азот). Таким образом, далеко не весь азот, входивший в состав погибших растений, возвращается обратно в почву; часть его постепенно выделяется в свободном виде.

Непрерывная убыль минеральных азотных соединений давно должна была бы привести к полному прекращению жизни на Земле, если бы в природе не существовали процессы, возмещающие потери азота. К таким процессам относятся, прежде всего происходящие в атмосфере электрические разряды, при которых всегда образуется некоторое количество оксидов азота; последние с водой дают азотную кислоту, превращающуюся в почве в нитраты. Другим источником пополнения азотных соединений почвы является жизнедеятельность так называемых азотобактерий, способных усваивать атмосферный азот. Некоторые из этих бактерий поселяются на корнях растений из семейства бобовых, вызывая образование характерных вздутий - «клубеньков», почему они и получили название клубеньковых бактерий. Усваивая атмосферный азот, клубеньковые бактерии перерабатывают его в азотные соединения, а растения, в свою очередь, превращают последние в белки и другие сложные вещества. Таким образом, в природе совершается непрерывный круговорот азота. Однако ежегодно с урожаем с полей убираются наиболее богатые белками части растений, например зерно. Поэтому в почву необходимо вносить удобрения, возмещающие убыль в ней важнейших элементов питания растений.

Круговорот фосфора

Фосфор входит в состав генов и молекул, переносящих энергию внутрь клеток. В различных минералах фосфор содержится в виде неорганического фосфатиона (PO43-). Фосфаты растворимы в воде, но не летучи. Растения поглощают PO43- из водного раствора и включают фосфор в состав различных органических соединений, где он выступает в форме так называемого органического фосфата. По пищевым цепям фосфор переходит от растений ко всем прочим организмам экосистемы. При каждом переходе велика вероятность окисления содержащего фосфор соединения в процессе клеточного дыхания для получения организмом энергии. Когда это происходит, фосфат в составе мочи или ее аналога вновь поступает в окружающую среду, после чего снова может поглощаться растениями и начинать новый цикл.Методические рекомендации по теме Человек и окружающая среда

В отличие, например, от углекислого газа, который, где бы он ни выделялся в атмосферу, свободно переносится в ней воздушными потоками пока снова не усвоится растениями, у фосфора нет газовой фазы и, следовательно, нет свободного возврата в атмосферу. Попадая в водоемы, фосфор насыщает, а иногда и перенасыщает экосистемы. Обратного пути, по сути дела, нет. Что-то может вернуться на сушу с помощью рыбоядных птиц, но это очень небольшая часть общего количества, оказывающаяся к тому же вблизи побережья. Океанические отложения фосфата со временем поднимаются над поверхностью воды в результате геологических процессов, но это происходит в течение миллионов лет. Следовательно, фосфат и другие минеральные биогены почвы циркулируют в экосистеме лишь в том случае, если содержащие их отходы жизнедеятельности откладываются в местах поглощения данного элемента. В естественных экосистемах так в основном и происходит. Когда же в их функционирование вмешивается человек, он нарушает естественный круговорот, перевозя, например, урожай вместе с накопленными из почвы биогенами на большие расстояния к потребителям.
Круговорот серы

Сера является важным составным элементом живого вещества. Большая часть ее в живых организмах находится в виде органических соединений. Кроме того, сера входит в состав некоторых биологически активных веществ: витаминов, а также ряда веществ, выступающих в качестве катализаторов окислительно-восстановительных процессов в организме и активизирующих некоторые ферменты. Сера представляет собой исключительно активный химический элемент биосферы и мигрирует в разных валентных состояниях в зависимости от окислительно-восстановительных условий среды. Среднее содержание серы в земной коре оценивается в 0,047 %. В природе этот элемент образует свыше 420 минералов.

В изверженных породах сера находится преимущественно в виде сульфидных минералов: пирита , пирронита , халькопирита , в осадочных породах содержится в глинах в виде гипсов, в ископаемых углях - в виде примесей серного колчедана и реже в виде сульфатов. Сера в почве находится преимущественно в форме сульфатов; в нефти встречаются ее органические соединения. В связи с окислением сульфидных минералов в процессе выветривания сера в виде сульфатиона переносится природными водами в Мировой океан. Сера поглощается морскими организмами, которые богаче ее неорганическими соединениями, чем пресноводные и наземные.

Основой самоподдержания жизни на Земле являются биогеохимические круговороты. Все химические элементы, используемые в процессах жизнедеятельности организмов, совершают постоянные перемещения, переходя из живых тел в соединения неживой природы и обратно. Возможность многократного использования одних и тех же атомов делает жизнь на Земле практически вечной при условии постоянного притока нужного количества энергии.

Типы круговоротов веществ

Биосфера Земли характеризуется определенным образом сложившимися круговоротом веществ и потоком энергии. Круговорот веществ - многократное участие веществ в процессах, протекающих в атмосфере, гидросфере и литосфере, в том числе в тех слоях, которые входят в состав биосферы Земли. Круговорот веществ осуществляется при непрерывном поступлении (потоке) внешней энергии Солнца и внутренней энергии Земли.

В зависимости от движущей силы, с определенной долей условности, внутри круговорота веществ можно выделить геологический, биологический и антропогенный круговороты. До возникновения человека на Земле осуществлялись только первые два.

Геологический круговорот (большой круговорот веществ в природе) - круговорот веществ, движущей силой которого являются экзогенные и эндогенные геологические процессы.

Эндогенные процессы (процессы внутренней динамики) происходят под влиянием внутренней энергии Земли. Это энергия, выделяющаяся в результате радиоактивного распада, химических реакций образования минералов, кристаллизации горных пород и т. д. К эндогенным процессам относятся: тектонические движения, землетрясения, магматизм, метаморфизм. Экзогенные процессы (процессы внешней динамики) протекают под влиянием внешней энергии Солнца. Экзогенные процессы включают выветривание горных пород и минералов, удаление продуктов разрушения с одних участков земной коры и перенос их на новые участки, отложение и накопление продуктов разрушения с образованием осадочных пород. К экзогенным процессам относятся геологическая деятельность атмосферы, гидросферы (рек, временных водотоков, подземных вод, морей и океанов, озер и болот, льда), а также живых организмов и человека.

Крупнейшие формы рельефа (материки и океанические впадины) и крупные формы (горы и равнины) образовались за счет эндогенных процессов, а средние и мелкие формы рельефа (речные долины, холмы, овраги, барханы и др.), наложенные на более крупные формы, - за счет экзогенных процессов. Таким образом, эндогенные и экзогенные процессы противоположны по своему действию. Первые ведут к образованию крупных форм рельефа, вторые - к их сглаживанию.

Магматические горные породы в результате выветривания преобразуются в осадочные. В подвижных зонах земной коры они погружаются вглубь Земли. Там под влиянием высоких температур и давлений они переплавляются и образуют магму, которая, поднимаясь на поверхность и застывая, образует магматические породы.

Таким образом, геологический круговорот веществ протекает без участия живых организмов и осуществляет перераспределение вещества между биосферой и более глубокими слоями Земли.

Биологический (биогеохимический) круговорот (малый круговорот веществ в биосфере) - круговорот веществ, движущей силой которого является деятельность живых организмов. В отличие от большого геологического малый биогеохимический круговорот веществ совершается в пределах биосферы. Главным источником энергии круговорота является солнечная радиация, которая порождает фотосинтез. В экосистеме органические вещества синтезируются автотрофами из неорганических веществ. Затем они потребляются гетеротрофами. В результате выделения в процессе жизнедеятельности или после гибели организмов (как автотрофов, так и гетеротрофов) органические вещества подвергаются минерализации, то есть превращению в неорганические вещества. Эти неорганические вещества могут быть вновь использованы для синтеза автотрофами органических веществ.

В биогеохимических круговоротах следует различать две части:

1) резервный фонд - это часть вещества, не связанная с живыми организмами;

2) обменный фонд - значительно меньшая часть вещества, которая связана прямым обменом между организмами и их непосредственным окружением. В зависимости от расположения резервного фонда биогеохимические круговороты можно разделить на два типа:

1) Круговороты газового типа с резервным фондом веществ в атмосфере и гидросфере (круговороты углерода, кислорода, азота).

2) Круговороты осадочного типа с резервным фондом в земной коре (круговороты фосфора, кальция, железа и др.).

Круговороты газового типа более совершенны, так как обладают большим обменным фондом, а значит, способны к быстрой саморегуляции. Круговороты осадочного типа менее совершенны, они более инертны, так как основная масса вещества содержится в резервном фонде земной коры в «недоступном» живым организмам виде. Такие круговороты легко нарушаются от различного рода воздействий, и часть обмениваемого материала выходит из круговорота. Возвратиться опять в круговорот она может лишь в результате геологических процессов или путем извлечения живым веществом. Однако извлечь нужные живым организмам вещества из земной коры гораздо сложнее, чем из атмосферы.

Интенсивность биологического круговорота в первую очередь определяется температурой окружающей среды и количеством воды. Так, например, биологический круговорот интенсивнее протекает во влажных тропических лесах, чем в тундре.

С появлением человека возник антропогенный круговорот, или обмен, веществ. Антропогенный круговорот (обмен) - круговорот (обмен) веществ, движущей силой которого является деятельность человека. В нем можно выделить две составляющие: биологическую, связанную с функционированием человека как живого организма, и техническую, связанную с хозяйственной деятельностью людей(техногенный круговорот).

Геологический и биологический круговороты в значительной степени замкнуты, чего нельзя сказать об антропогенном круговороте. Поэтому часто говорят не об антропогенном круговороте, а об антропогенном обмене веществ. Незамкнутость антропогенного круговорота веществ приводит к истощению природных ресурсов и загрязнению природной среды - основным причинам всех экологических проблем человечества.

Круговороты основных биогенных веществ и элементов. Рассмотрим круговороты наиболее значимых для живых организмов веществ и элементов. Круговорот воды относится к большому геологическому, а круговороты биогенных элементов (углерода, кислорода, азота, фосфора, серы и других биогенных элементов) - к малому биогеохимическому.

Круговорот воды между сушей и океаном через атмосферу относится к большому геологическому круговороту. Вода испаряется с поверхности Мирового океана и либо переносится на сушу, где выпадает в виде осадков, которые вновь возвращаются в океан в виде поверхностного и подземного стока, либо выпадает в виде осадков на поверхность океана. В круговороте воды на Земле ежегодно участвует более 500 тыс. км3 воды. Круговорот воды в целом играет основную роль в формировании природных условий на нашей планете. С учетом транспирации воды растениями и поглощения ее в биогеохимическом цикле весь запас воды на Земле распадается и восстанавливается за 2 млн. лет.

Круговорот углерода. Продуценты улавливают углекислый газ из атмосферы и переводят его в органические вещества, консументы поглощают углерод в виде органических веществ с телами продуцентов и консументов низших порядков, редуценты минерализуют органические вещества и возвращают углерод в атмосферу в виде углекислого газа. В Мировом океане круговорот углерода усложнен тем, что часть углерода, содержащегося в мертвых организмах, опускается на дно и накапливается в осадочных породах. Эта часть углерода выключается из биологического круговорота и поступает в геологический круговорот веществ.

Главным резервуаром биологически связанного углерода являются леса, они содержат до 500 млрд. т этого элемента, что составляет 2/3 его запаса в атмосфере. Вмешательство человека в круговорот углерода (сжигание угля, нефти, газа, дегумификация) приводит к возрастанию содержания СО2 в атмосфере и развитию парникового эффекта.

Скорость круговорота СО2, то есть время, за которое весь углекислый газ атмосферы проходит через живое вещество, составляет около 300 лет.

Круговорот кислорода. Главным образом круговорот кислорода происходит между атмосферой и живыми организмами. В основном свободный кислород (02) поступает в атмосферу в результате фотосинтеза зеленых растений, а потребляется в процессе дыхания животными, растениями и микроорганизмами и при минерализации органических остатков. Незначительное количество кислорода образуется из воды и озона под воздействием ультрафиолетовой радиации. Большое количество кислорода расходуется на окислительные процессы в земной коре, при извержении вулканов и т.д. Основная доля кислорода продуцируется растениями суши - почти 3/4, остальная часть - фотосинтезирующими организмами Мирового океана. Скорость круговорота - около 2 тыс. лет.

Установлено, что на промышленные и бытовые нужды ежегодно расходуется 23% кислорода, который образуется в процессе фотосинтеза, и эта цифра постоянно возрастает.

Круговорот азота. Запас азота (N2) в атмосфере огромен (78% от ее объема). Однако растения поглощать свободный азот не могут, а только в связанной форме, в основном в виде NН4+ или NО3-. Свободный азот из атмосферы связывают азотфиксирующие бактерии и переводят его в доступные растениям формы. В растениях азот закрепляется в органическом веществе (в белках, нуклеиновых кислотах и пр.) и передается по цепям питания. После отмирания живых организмов редуценты минерализуют органические вещества и превращают их в аммонийные соединения, нитраты, нитриты, а также в свободный азот, который возвращается в атмосферу.

Нитраты и нитриты хорошо растворимы в воде и могут мигрировать в подземные воды и растения и передаваться по пищевым цепям. Если их количество излишне велико, что часто наблюдается при неправильном применении азотных удобрений, то происходит загрязнение вод и продуктов питания, и вызывает заболевания человека.

Круговорот фосфора. Основная масса фосфора содержится в горных породах, образовавшихся в прошлые геологические эпохи. В биогеохимический круговорот фосфор включается в результате процессов выветривания горных пород. В наземных экосистемах растения извлекают фосфор из почвы (в основном в форме РО43-) и включают его в состав органических соединений (белков, нуклеиновых кислот, фосфолипидов и др.) или оставляют в неорганической форме. Далее фосфор передается по цепям питания. После отмирания живых организмов и с их выделениями фосфор возвращается в почву.

При неправильном применении фосфорных удобрений, водной и ветровой эрозии почв большие количества фосфора удаляются из почвы. С одной стороны, это приводит к перерасходу фосфорных удобрений и истощению запасов фосфорсодержащих руд (фосфоритов, апатитов и др.). С другой стороны, поступление из почвы в водоемы больших количеств таких биогенных элементов, как фосфор, азот, сера и др., вызывает бурное развитие цианобактерий и других водных растений («цветение» воды) и эвтрофикациюводоемов. Но большая часть фосфора уносится в море.

В водных экосистемах фосфор усваивается фитопланктоном и передается по трофической цепи вплоть до морских птиц. Их экскременты либо сразу попадают назад в море, либо сначала накапливаются на берегу, а затем все равно смываются в море. Из отмирающих морских животных, особенно рыб, фосфор снова попадает в море и в круговорот, но часть скелетов рыб достигает больших глубин, и заключенный в них фосфор снова попадает в осадочные породы, то есть выключается из биогеохимического круговорота.

Круговорот серы. Основной резервный фонд серы находится в отложениях и почве, но в отличие от фосфора имеется резервный фонд и в атмосфере. Главная роль в вовлечении серы в биогеохимический круговорот принадлежит микроорганизмам. Одни из них восстановители, другие - окислители.

В горных породах сера встречается в виде сульфидов (FeS2 и др.), в растворах - в форме иона (SO42-), в газообразной фазе в виде сероводорода (Н2S) или сернистого газа (SО2). Внекоторых организмах сера накапливается в чистом виде и при их отмирании на дне морей образуются залежи самородной серы.

По содержанию в морской среде Сульфат-ион занимает второе место после хлора и является основной доступной формой серы, которая потребляется автотрофами и включается в состав белков.

В наземных экосистемах сера поступает в растения из почвы в основном в виде сульфатов. В живых организмах сера содержится в белках, в виде ионов и т.д. После гибели живых организмов часть серы восстанавливается в почве микроорганизмами до Н2S, другая часть окисляется до сульфатов и вновь включается в круговорот. Образовавшийся сероводород улетучивается в атмосферу, там окисляется и возвращается в почву с осадками.

Сжигание человеком ископаемого топлива (особенно угля), а также выбросы химической промышленности, приводят к накоплению в атмосфере сернистого газа (SO2), который реагируя с парами воды, выпадает на землю в виде кислотных дождей.

Биогеохимические циклы не столь масштабны как геологические и в значительно степени подвержены влиянию человека. Хозяйственная деятельность нарушает их замкнутость, они становятся ацикличными.

Глобальные экологические проблемы и пути их решения

Сегодня экологическую ситуацию в мире можно охарактеризовать как близкую к критической. Среди глобальных экологических проблем можно отметить следующие:
- уничтожены и продолжают уничтожаться тысячи видов растений и животных;
- в значительной мере истреблен лесной покров;
- стремительно сокращается имеющийся запас полезных ископаемых;
- мировой океан не только истощается в результате уничтожения живых организмов, но и перестает быть регулятором природных процессов;
- атмосфера во многих местах загрязнена до предельно допустимых размеров, а чистый воздух становится дефицитом;
- частично нарушен озоновый слой, защищающий от губительного для всего живого космического излучения;
- загрязнение поверхности и обезображивание природных ландшафтов: на Земле невозможно обнаружить ни одного квадратного метра поверхности, где бы не находилось искусственно созданных человеком элементов.
Cтало совершенно очевидной пагубность потребительского отношения человека к природе лишь как к объекту получения определенных богатств и благ. Для человечества становится жизненно необходимым изменение самой философии отношения к природе.
Какие же необходимы меры для решения глобальных экологических проблем! Прежде всего следует перейти от потребительско-технократического подхода к природе к поиску гармонии с нею. Для этого, в частности, необходим целый ряд целенаправленных мер по экологизации производства: природосберегающие технологии, обязательная экологическая экспертиза новых проектов, создание безотходных технологий замкнутого цикла.
Другой мерой, направленной на улучшение взаимоотношений человека и природы, является разумное самоограничение в расходовании природных ресурсов, особенно - энергетических источников (нефть, уголь), имеющих для жизни человечества важнейшее значение. Подсчеты международных экспертов показывают, что если исходить из современного уровня потребления (конец XX в.), то запасов угля хватит еще на 430 лет, нефти - на 35 лет, природного газа - на 50 лет. Срок, особенно по запасам нефти, не такой уж и большой. В связи с этим необходимы разумные структурные изменения в мировом энергобалансе в сторону расширения применения атомной энергии, а также поиск новых, эффективных, безопасных и максимально безвредных для природы источников энергии, включая космическую.
Однако ощутимый эффект все перечисленные и другие меры могут дать лишь при условии объединения усилий всех стран для спасения природы. Первая попытка такого международного объединения была осуществлена еще в начале XX века. Тогда в ноябре 1913 г. в Швейцарии состоялось первое международное совещание по вопросам охраны природы с участием представителей 18 крупнейших государств мира.
Ныне межгосударственные формы сотрудничества выходят на качественно новый уровень. Заключаются международные конвенции по охране окружающей среды (квоты по вылову рыб, запрет на промысел китов и др.), осуществляются самые различные совместные разработки и программы. Активизировалась деятельность общественных организаций по защите окружающей среды - «зеленые» («Гринпис»). Экологический интернационал Зеленого Креста и Зеленого Полумесяца в настоящее время разрабатывает программу по решению проблемы «озоновых дыр» в атмосфере Земли. Однако следует признать, что при весьма различном уровне социально-политического развития государств мира международное сотрудничество в экологической сфере еще весьма далеко от своего совершенства.
Еще одним направлением для решения экологической проблемы, и может быть в перспективе - самым важным из всех, является формирование в обществе экологического сознания, понимания людьми природы как другого живого существа, над которым нельзя властвовать без ущерба для него и себя. Экологическое обучение и воспитание в обществе должны быть поставлены на государственный уровень, проводиться с раннего детства. При любых озарениях, рождаемых разумом, и стремлениях, неизменным вектором поведения человечества должно оставаться его гармония с природой.

Глобальная экологическая проблема №1: Загрязнение атмосферы

Ежедневно среднестатистический человек вдыхает порядка 20 000 литров воздуха, содержащего, помимо жизненно важного кислорода, целый перечень вредных взвешенных частиц и газов. Загрязнители атмосферы условно делятся на 2 типа: естественные и антропогенные. Последние превалируют.

Причины экологической проблемы

С химической промышленностью дела обстоят не лучшим образом. Заводы выбрасывают такие вредные вещества, как пыль, мазутная зола, различные химические соединения, окислы азота и многое другое. Замеры воздуха показали катастрофическое положение атмосферного слоя, загрязненный воздух становится причиной многих хронических заболеваний.

Загрязнение атмосферы - экологическая проблема, не понаслышке знакомая жителям абсолютно всех уголков земли. Особенно остро её ощущают представители городов, в которых функционируют предприятия чёрной и цветной металлургии, энергетики, химической, нефтехимической, строительной и целлюлозно-бумажной промышленности. В некоторых городах атмосферу также сильно отравляют автотранспорт и котельные. Всё это примеры антропогенного загрязнения воздуха.

Что же касается естественных источников химических элементов, загрязняющих атмосферу, то к ним относятся лесные пожары, извержения вулканов, ветровые эрозии (развеивание почв и частиц горных пород), распространение пыльцы, испарения органических соединений и естественная радиация.

Методические рекомендации по теме Человек и окружающая среда

Последствия загрязнения атмосферы

Атмосферное загрязнение воздуха отрицательно сказывается на здоровье человека, способствуя развитию сердечных и лёгочных заболеваний (в частности, бронхита). Кроме того, такие загрязнители атмосферы как озон, оксиды азота и диоксид серы разрушают естественные экосистемы, уничтожая растения и вызывая смерть живых существ (в частности, речной рыбы).

Решение экологической проблемы

Глобальную экологическую проблему загрязнения атмосферы, по словам учёных и представителей власти, можно решить следующими путями:

  • ограничение роста численности населения;

  • сокращение объёмов использования энергии;

  • повышение энергоэффективности;

  • уменьшение отходов;

  • переход на экологически чистые возобновляемые источники энергии;

  • очистка воздуха на особо загрязнённых территориях.

Глобальная экологическая проблема №2: Истощение озонового слоя

Озоновый слой - тонкая полоска стратосферы, защищающая всё живое на Земле от губительных ультрафиолетовых лучей Солнца.

Причины экологической проблемы

Ещё в 1970-х гг. экологи обнаружили, что озоновый слой разрушается под воздействием хлорфторуглеродов. Эти химические вещества входят в состав охлаждающих жидкостей холодильников и кондиционеров, а также растворителей, аэрозолей/спреев и огнетушителей. В меньшей степени истончению озонового слоя способствуют и другие антропогенные воздействия: запуск космических ракет, полёты реактивных самолётов в высоких слоях атмосферы, испытания ядерного оружия, сокращение лесных угодий планеты. Существует также теория, согласно которой, истончению озонового слоя способствует глобальное потепление.

Последствия разрушения озонового слоя

Методические рекомендации по теме Человек и окружающая среда

В результате разрушения озонового слоя ультрафиолетовое излучение беспрепятственно проходит через атмосферу и достигает поверхности земли. Воздействие прямых УФ-лучей пагубно сказывается на здоровье людей, ослабляя иммунную систему и вызывая такие заболевания как рак кожи и катаракта.

Мировая экологическая проблема №3: Глобальное потепление

Подобно стеклянным стенам парника, углекислый газ, метан, окись азота и водяной пар позволяют солнцу нагревать нашу планету и одновременно препятствуют выходу в космос отражающегося от поверхности земли инфракрасного излучения. Все эти газы ответственны за поддержание температуры, приемлемой для жизни на земле. Однако повышение концентрации углекислого газа, метана, оксида азота и водяного пара в атмосфере - это очередная мировая экологическая проблема, именуемая глобальным потеплением (или парниковым эффектом).

Причины глобального потепления

В течение XX века средняя температура на земле выросла на 0,5 - 1 ?C. Главной причиной глобального потепления считается повышение концентрации углекислого газа в атмосфере вследствие увеличения объёмов сжигаемого людьми ископаемого топлива (уголь, нефть и их производные). Однако по заявлению Алексея Кокорина, руководителя климатических программ Всемирного фонда дикой природы (WWF) России, «наибольшее количество парниковых газов образуется в результате работы электростанций и выбросов метана в ходе добычи и доставки энергоресурсов, в то время как дорожный транспорт или сжигание попутного нефтяного газа в факелах наносят сравнительно небольшой вред окружающей среде».

Другими предпосылками глобального потепления являются перенаселение планеты, сокращение площади лесных массивов, истощение озонового слоя и замусоривание. Однако не все экологи возлагают ответственность за повышение среднегодовых температур целиком на антропогенную деятельность. Некоторые считают, что глобальному потеплению способствует и естественное увеличение численности океанического планктона, приводящее к повышению концентрации всё того же углекислого газа в атмосфере.

Последствия парникового эффекта

Методические рекомендации по теме Человек и окружающая среда

Если температура в течение XXI века увеличится ещё на 1 ?C - 3,5 ?C, как прогнозируют учёные, последствия будут весьма печальными:

  • поднимется уровень мирового океана (вследствие таяния полярных льдов), возрастёт количество засух и усилится процесс опустынивания земель,

  • исчезнут многие виды растений и животных, приспособленные к существованию в узком диапазоне температур и влажности,

  • участятся ураганы.

Решение экологической проблемы

Замедлить процесс глобального потепления, по словам экологов, помогут следующие меры:

  • повышение цен на ископаемые виды топлива,

  • замена ископаемого топлива экологически чистым (солнечная энергия, энергия ветра и морских течений),

  • развитие энергосберегающих и безотходных технологий,

  • налогообложение выбросов в окружающую среду,

  • минимизация потерь метана во время его добычи, транспортировки по трубопроводам, распределения в городах и сёлах и применения на станциях теплоснабжения и электростанциях,

  • внедрение технологий поглощения и связывания углекислого газа,

  • посадка деревьев,

  • уменьшение размеров семей,

  • экологическое просвещение,

  • применение фитомелиорации в сельском хозяйстве.

Глобальная экологическая проблема №4: Кислотные дожди

Кислотные дожди, содержащие продукты сжигания топлива, также представляют опасность для окружающей среды, здоровья человека и даже для целостности памятников архитектуры.

Последствия кислотных дождей

Содержащиеся в загрязнённых осадках и тумане растворы серной и азотной кислот, соединения алюминия и кобальта загрязняют почву и водоёмы, пагубно воздействуют на растительность, вызывая суховершинность лиственных деревьев и угнетая хвойные. Из-за кислотных дождей падает урожайность сельскохозяйственных культур, люди пьют обогащённую токсичными металлами (ртутью, кадмием, свинцом) воду, мраморные памятники архитектуры превращаются в гипс и размываются.

Решение экологической проблемы

Во имя спасения природы и архитектуры от кислотных дождей, необходимо минимизировать выбросы окислов серы и азота в атмосферу.

Глобальная экологическая проблема №5: Загрязнение почвы

Методические рекомендации по теме Человек и окружающая среда

Ежегодно люди загрязняют окружающую среду 85 млрд. тоннами отходов. Среди них твёрдые и жидкие отходы промышленных предприятий и транспорта, с/х отходы (в том числе ядохимикаты), бытовой мусор и атмосферные выпадения вредных веществ.

Главную роль в загрязнении почвы играют такие компоненты техногенных отходов как тяжёлые металлы (свинец, ртуть, кадмий, мышьяк, таллий, висмут, олово, ванадий, сурьма), пестициды и нефтепродукты. Из почвы они проникают в растения и воду, даже родниковую. По цепочке токсичные металлы попадают в организм человека и не всегда быстро и полностью из него выводятся. Часть из них имеет свойство накапливаться в течение долгих лет, провоцируя развитие тяжёлых заболеваний.

Глобальная экологическая проблема №6: Загрязнение воды

Загрязнение мирового океана, подземных и поверхностных вод суши - глобальная экологическая проблема, ответственность за которую целиком и полностью лежит на человеке.

Причины экологической проблемы

Главными загрязнителями гидросферы на сегодняшний день являются нефть и нефтепродукты. В воды мирового океана эти вещества проникают в результате крушения танкеров и регулярных сбросов сточных вод промышленными предприятиями.

Помимо антропогенных нефтепродуктов, индустриальные и бытовые объекты загрязняют гидросферу тяжёлыми металлами и сложными органическими соединениями. Лидерами по отравлению вод мирового океана минеральными веществами и биогенными элементами признаются сельское хозяйство и пищевая промышленность.

Методические рекомендации по теме Человек и окружающая среда

Не обходит стороной гидросферу и такая глобальная экологическая проблема как радиоактивное загрязнение. Предпосылкой её формирования послужило захоронение в водах мирового океана радиоактивных отходов. Многие державы, обладающие развитой атомной промышленностью и атомным флотом, с 49 по 70-й годы XX века целенаправленно складировали в моря и океаны вредные радиоактивные вещества. В местах захоронения радиоактивных контейнеров нередко и сегодня зашкаливает уровень цезия. Но «подводные полигоны» не единственный радиоактивный источник загрязнения гидросферы. Воды морей и океанов обогащаются радиацией и в результате подводных и надводных ядерных взрывов.

Последствия радиоактивного загрязнения воды

Нефтяное загрязнение гидросферы приводит к разрушению естественной среды обитания сотен представителей океанической флоры и фауны, гибели планктона, морских птиц и млекопитающих. Для здоровья человека отравление вод мирового океана также представляет серьёзную опасность: «заражённая» радиацией рыба и прочие морепродукты могут запросто попасть к нему на стол.

Проблема Север-Юг

Это проблема экономических отношений развитых стран с развивающимися. Ее суть состоит в том, что для преодоления разрыва в уровнях социально-экономического развития между развитыми и развивающимися странами последние требуют or развитых стран различных уступок, в частности, расширения доступа своих товаров на рынки развитых стран, усиления притока знаний и капитала (особенно в форме помощи), списания долгов и других мер по отношению к ним.

Проблема бедности

Одной из главных глобальных проблем является проблема бедности. Под бедностью понимается невозможность обеспечивать простейшие и доступные для большинства людей в данной стране условия жизни. Большие масштабы бедности, особенно в развивающихся странах, представляют серьезную опасность не только для национального, но и для мирового устойчивого развития.

Мировая продовольственная проблема

Заключается в неспособности человечества до настоящего времени полностью обеспечить себя жизненно важными продуктами питания. Данная проблема выступает на практике как проблема абсолютной нехватки продовольствия (недоедания и голода) в наименее развитых странах, а также несбалансированности питания в развитых. Ее решение будет во многом зависеть от эффективного использования природных ресурсов, научно-технического прогресса в сфере сельского хозяйства и от уровня государственной поддержки.

Глобальная энергетическая проблема

Это проблема обеспечения человечества топливом и энергией в настоящее время и в обозримом будущем.

Глобальная энергетическая проблема

Главной причиной возникновения глобальной энергетической проблемы следует считать быстрый рост потребления минерального топлива в XX в. Если развитые страны решают эту проблему сейчас прежде всего за счет замедления роста своего спроса путем снижения энергоемкости, то в остальных странах идет сравнительно быстрый рост энергопотребления. К этому может добавиться растущая конкуренция на мировом рынке энергоресурсов между развитыми странами и новыми крупными индустриальными странами (Китай, Индия, Бразилия). Все эти обстоятельства в сочетании с военно-политической нестабильностью в некоторых регионах могут обусловливать значительные колебания в уровне мировых цен на энергоресурсы и серьезно влиять на динамику спроса и предложения, а также производства и потребления энергетических товаров, создавая подчас кризисные ситуации.

Экологический потенциал мировой экономики все больше подрывается хозяйственной деятельностью человечества. Ответом на это стала концепция экологически устойчивого развития. Она предполагает развитие всех стран мира с учетом настоящих потребностей, но не подрывающее интересы будущих поколений.

Защита окружающей среды является важной частью развития. В 70-х гг. 20 века экономисты осознали важное значение проблем окружающей среды для экономического развития. Процессы деградации окружающей среды могут иметь самовоспроизводящийся характер, что грозит обществу необратимым разрушение и исчерпанием ресурсов.

Глобальная демографическая проблема распадается на два аспекта: демографический взрыв в ряде стран и регионов развивающегося мира и демографическое старение населения развитых и переходных стран. Для первых решением является повышение темпов экономического роста и снижение темпов роста населения. Для вторых - эмиграция и реформирование пенсионной системы.

Взаимосвязь роста населения и экономического роста длительное время является предметом исследования экономистов. В результате исследований выработалось два подхода к оценке влияния роста населения на экономическое развитие. Первый подход в той или иной степени связан с теорией Мальтуса, который полагал, что рост населения опережает рост продовольствия и поэтому население мира неизбежно беднеет. Современный подход к оценке роли народонаселения на экономику является комплексным и выявляет как положительные, так и негативные факторы влияния роста населения на экономический рост.

Многие специалисты считают, что действительная проблема - не рост населения сам по себе, а следующие проблемы:

  • слаборазвитость - отсталость в развитии;

  • истощение мировых ресурсов и разрушение окружающей среды.

Проблема развития человеческого потенциала - это проблема соответствия качественных характеристик рабочей силы характеру современной экономики. В условиях постиндустриализации возрастают требования к физическим качествам и особенно к образованию работника, включая его способности к постоянному повышению квалификации. Однако развитие качественных характеристик рабочей силы в мировом хозяйстве происходит крайне неравномерно. Наихудшие показатели в этом плане демонстрируют развивающиеся страны, которые, однако, выступают основным источником пополнения мировых трудовых ресурсов. Именно это обусловливает глобальный характер проблемы развития человеческого потенциала.

Нарастающая глобализация, взаимозависимость и сокращение временных и пространственных барьеров создают ситуацию коллективной незащищенности oт различных угроз, от которой человека не всегда может спасти его государство. Это требует создания условий, усиливающих способность человека самостоятельно противостоять рискам и угрозам.

Проблема Мирового океана - это проблема сохранения и рационального использования его пространств и ресурсов. В настоящее время Мировой океан как замкнутая экологическая система с трудом выдерживает во много раз усилившуюся антропогенную нагрузку, и создается реальная угроза его гибели. Поэтому глобальная проблема Мирового океана - это прежде всего проблема его выживания и, следовательно, выживания современного человека.

Решение названных проблем является сегодня актуальной задачей для всего человечества. От того когда и как они начнут решаться зависит выживание людей. Выделяют следующие пути решения глобальных проблем современности.

Предотвращение мировой войны с применением термоядерного оружия и других средств массового уничтожения, грозящих гибелью цивилизации. Это предполагает обуздание гонки вооружений, запрещение создания и применения систем вооружения массового уничтожения, людских и материальных ресурсов, ликвидацию ядерного оружия и т.д.;

Преодоление экономического и культурного неравенства между народами населяющими индустриально развитые страны Запада и Востока и развивающимися странами Азии, Африки и Латинской Америки;

Преодоление кризисного состояния взаимодействия человечества и природы, которое характеризуется катастрофическими последствиями в виде беспрецедентного загрязнения окружающей среды и истощения природных ресурсов. Это делает необходимым выработку мер, направленных на экономное использование природных ресурсов и снижение загрязнений отходами материального производства почвы, воды и воздуха;

Снижение темпов роста народонаселения в развивающихся странах и преодоление демографического кризиса в развитых капиталистических странах;

Предотвращение негативных последствий современной научно-технической революции;

Преодоление тенденции к снижению социального здоровья, что предполагает борьбу с алкоголизмом, наркоманией, онкологическими заболеваниями, СПИДом, туберкулезом и другими болезнями.



Основная литература

  • Ахмедова Т. И., Мосягина О.В. Естествознание. Учебное пособие. М.: РАП, 2012.

  • Константинов В. М., Резанов А. Г. Общая биология (СПО), 6-е издание, М.: «Академия», 2010.

  • Общая биология / под редакцией С.И. Колесникова, Ростов-на-Дону: Феникс, 2005 г.

  • Общая биология. Учебник для 10-11 классов / под редакцией С.Ю. Вертьянова, М.: Свято-Троицкая Сергиева Лавра, 2012 г.

  • Общая биология 10-11 классы / под редакцией А. А. Каменского, М.: Дрофа, 2011 г.

Дополнительная литература

  • Биология. Справочник для поступающих в ВУЗы/ под ред. Н.В. Чебышев, М:Новая волна, 2012 г.

  • Биология для поступающих в вузы / под редакцией Г. Л. Билич, В. А. Крыжановский, М.: Оникс 21 век, 2008 г.

  • Беляев Д.К., Бородин П.М., Воронцов Н.Н. и др./Под редакцией Беляева Д.К., Дымшица Г.М. Биология. Учебник для 10-11 классов общеобразовательных учреждений. М.: «Просвещение», 2006.

  • Общая биология. Учебник для 10-11 классов / под редакцией Д.К. Беляева, Г.М. Дымшица, М.: Просвещение, Московские учебники, 2005г.

  • Общая биология для 10-11 классов общеобразовательных учреждений/ под редакцией В. Б. Захарова, С.Г. Мамонтова, В.И. Сивоглазова, М.: Дрофа, 2003 г.

  • Общая биология. Д.К. Беляев, Н.Н. Воронцов и др.Учебник для 10-11 классов общеобразовательных учреждений. М.: Просвещение, 2004.

  • Колесников С. И. Общая биология (СПО). М.: «Феникс», 2006

  • Сивоглазов В. И., Агафонова И. Б. Общая биология (СПО), М.: «Дрофа», 2010.

  • Тупикин Е. И. Общая биология с основами экологии и природоохранной деятельности. М.: «Академия», 2009.


Интернет - источники

grandars.ru/

cito-web.yspu.org/

art-con.ru/

ecosystema.ru/

ecology-education.ru/

socfil.narod.ru/

dishisvobodno.ru/

grandars.ru/


Приложение 1 Тесты

Биосфера и человек

Вариант 1

Часть А

А1.Биосфера - глобальная экосистема, структурными компонентами которой являются

  1. Классы и отделы растений

  2. Популяции

  3. Биогеоценозы

  4. Классы и типы животных

А2.Границы биосферы определяются

  1. Условиями, непригодными для жизни

  2. Колебаниями положительных температур

  3. Количеством выпадающих осадков

  4. Облачностью атмосферы

А3.В масштабе геологического времени большая роль в преобразовании вещества и энергии принадлежит

  1. Атмосфере

  2. Живому веществу

  3. Воде

  4. Почве

А4.Окислительно-восстановительная функция растений в биосфере проявляется в их способности

  1. К фотосинтезу и дыханию

  2. Накапливать в организме определённые элементы

  3. Разрушать горные породы

  4. Поглощать воду и минеральные соли из почвы

А5.Благодаря какой функции живого вещества образовались скопления известняка в земной коре?

  1. Окислительно-восстановительной

  2. Репродуктивной

  3. Концентрационной

  4. Энергетической

А6.К глобальным изменениям в биосфере относят

  1. Загрязнение почвы в отдельных регионах отходами сельскохозяйственного производства

  2. Загрязнение воздуха отходами производства в зоне расположения химического завода

  3. Уничтожение пожарами лесопарковой зоны города

  4. Сокращение на планете запасов пресной воды

А7.Глобальное потепление на Земле может наступить в результате

  1. Урбанизации ландшафтов

  2. Циклических процессов на Солнце

  3. Вырубки лесов на планете

  4. Парникового эффекта

А8.Каковы последствия расширения озоновых дыр?

  1. Повышение температуры воздуха, частое появление туманов

  2. Усиление ультрафиолетового излучения, вредного для здоровья

  3. Понижение температуры и повышение влажности воздуха

  4. Уменьшение прозрачности атмосферы и снижение интенсивности фотосинтеза

А9.К глобальным изменениям в биосфере может привести

  1. Увеличение численности отдельных видов

  2. Опустынивание территорий

  3. Выпадение обильных осадков

  4. Смена одного сообщества другим

А10.Причиной глобального экологического кризиса в настоящую эпоху можно считать

  1. Перевыпас скота на пастбищах

  2. Вулканическую деятельность

  3. Сокращение биоразнообразия планеты

  4. Разливы рек при половодье

А11. Примером нерационального природопользования является

1) рекультивация земель

2) проведение снегозадержания на полях

3) использование оборотного водоснабжения в промышленности

4) осушение болот в верховьях рек

А12.Наиболее эффективный способ охраны всех видов растений и животных - это

  1. Запрет на сборы растений и отстрел животных

  2. Отказ от использования видов растений и животных человеком

  3. Регуляция численности видов и охрана природных сообществ

  4. Создание зоопарков и ботанических садов

А13.Оценка значения каждого вида с точки зрения пользы или вреда для человека, а не с позиций их роли в биосфере, присуща

  1. Биоцентризму

  2. Антропоцентризму

  3. Организмоцентризму

  4. Полицентризму

А14.Почему некоторые виды растений и животных стали редкими?

  1. Сократилась их численность в связи с возрастом

  2. Их уничтожили животные

  3. Они погибли от болезней

  4. Человек сильно изменил их среду обитания

А15.Создание Красной книги направлено на

  1. Раскрытие связей организмов со средой

  2. Сохранение редких и исчезающих видов растений и животных

  3. Определение места вида в системе органического мира

  4. Ознакомление с многообразием растений и животных

Часть В

В1 Устойчивое развитие биосферы обеспечивают меры, направленные на

  1. Сохранение и восстановление численности отдельных видов

  2. Сокращение численности хищников в экосистемах

  3. Создание агроэкосистем

  4. Сохранение видового разнообразия

  5. Предотвращение загрязнения окружающей среды

  6. Внедрение новых видов в экосистемы

В2 Установите соответствие между отраслью промышленности и видами веществ-загрязнителей, поступающими в окружающую среду

  1. электротехническая

А) пары горючесмазочных материалов, металлическая пыль

  1. нефтехимическая и нефтеперерабатывающая

Б) угарный газ, соединения свинца, оксиды азота и серы

  1. металлообрабатывающая

В) соединения свинца, ртути, пары канифоли

  1. транспорт

Г) пары различных углеводородов, алюмосиликатная пыль, продукты разложения органических веществ

Д) пыль кремниевых соединений, угарный газ, диоксид углерода

В3 Охраняемая территория, полностью изъятая из хозяйственного использования,-....

В4 Установите в какой последовательности располагаются уровни организации живого:

А) биоценотический

Б) видовой

В) популяционный

Г) биогеоценотический

Д) организменный

Е) биосферный

Часть С

С1. Какие из перечисленных видов топлива - природный газ, каменный уголь, атомная энергия способствуют созданию парникового эффекта. Ответ поясните.

Прочитайте текст и выполните задания С2,С3

Биосфера - это часть биологической оболочки Земли, свойства которой определяются активностью живых организмов. Учение о биосфере создано русским геохимиком В. И. Вернадским. По его словам, биосфера - это оболочка, где существует или существовала жизнь.

Биосфера охватывает всю поверхность суши, моря и океаны, ту часть недр Земли, где находятся породы, созданные деятельностью живых организмов - уголь, нефть, газ - биогенные вещества. В глубину твёрдой части Земли активная жизнь проникает местами до 3 км (бактерии в нефтяных месторожденияз).

В атмосфере границы распространения жизни ограничиваются озоновым экраном на высоте около 20 км. Он задерживает губительные ультрафиолетовые лучи Солнца.

Всю массу организмов всех видов Вернадский назвал живым веществом Земли, которые постоянно в ходе обмена веществ перераспределяют химические элементы в природе, осуществляют круговорот веществ.

Жизнью создан на поверхности суши почвенный слой. В нём так тесно связаны между собой минеральные компоненты, разлагающиеся органические вещества и многочисленные микроорганизмы, что Вернадский отнёс её к особым, биокосным телам природы. Такой же биокосный состав имеют и воды Мирового океана, насыщенные бесчисленными обитателями до дна самых глубоких впадин в 10-11 км.

Косное вещество биосферы образуется процессами, в которых живые организмы не участвуют. Например, изверженные горные породы.

Часть биосферы, находящуюся под влиянием активной деятельности человека, называют ноосферой - сферой человеческого разум. Чаще всего влияние человечества на биосферу губительно, что в свою очередь губительно и для человечества.

С2. Прочитайте текст. Внесите недостающие сведения в таблицу

Компонент

Краткая характеристика

Примеры

Живое вещество

Совокупность живых организмов и продуктов их жизнедеятельности

1

2

Образуется процессами, в которых живые организмы не участвуют

Изверженные горные породы

Биогенное вещество

3

Уголь, нефть, газ

4

Образуется в результате совместной деятельности организмов и тел неживой природы

5

С3. На основании текста ответьте на вопрос: что является верхней и нижней границами биосферы?

Биосфера и человек

Вариант 2

Часть А. Выпишите номера правильных ответов.

1. Оболочка Земли, заселенная живыми организмами, называется:

1) гидросфера; 2) литосфера; 3) атмосфера; 4) биосфера.

2. Учение о биосфере было создано:

1) Ж.-Б. Ламарком; 2) В.И. Вернадским; 3) Э.Зюссом; 4) Э.Леруа.

3. Граница биосферы в атмосфере находится на высоте:

1) 77 км; 2) 12,5 км, 3) 10 км; 4) 20 км.

4. Пленка жизни на поверхности Мирового океана называется:

1) планктон; 2) нектон; 3) бентос; 4) нейстон.

5. В Мертвом море фактором, ограничивающим распространение жизни, является:

1) отсутствие воды в жидкой фазе;

2) концентрация соли свыше 270 г/л;
3) отсутствие элементов минерального питания;

4) все перечисленные условия.

6. Живое вещество - это:

1) совокупность всех растений биосферы;

2) совокупность всех животных биосферы;
3) совокупность всех живых организмов биосферы;

4) нет правильного ответа.

7. К косному веществу биосферы относятся:

1) нефть, каменный уголь, известняк;

2) вода, почва;

3) гранит, базальт;

4) растения, животные, бактерии, грибы.

8. Концентрационная функция живого вещества состоит в способности:

1) живых организмов накапливать и передавать по пищевой цепи энергию;
2) зеленых растений использовать СО2 и выделять в атмосферу О2;
3) хемоавтотрофов окислять химические элементы;
4) живых организмов накапливать различные химические элементы.

9. Биосфера - это:

1) глобальная саморегулирующаяся со своим входом и выходом

2) глобальная нерегулирующаяся система, имеющая вход

3) глобальная нерегулирующаяся система, имеющая выход

4) глобальная саморегулирующаяся система, имеющая вход, но не имеющая выхода

10. Ноосфера - это:

1) сфера прошлой жизни;

2) сфера разумной жизни;

3) сфера будущей жизни;

4) правильного ответа нет.

11. Окислительно-восстановительная функция живого вещества состоит в способности:

а) живых организмов накапливать и передавать по пищевой цепи энергию;
б) зеленых растений использовать СО2 и выделять в атмосферу О2;
в) хемоавтотрофов окислять химические элементы;
г) живых организмов накапливать различные химические элементы.

12 Максимальная концентрация жизни в биосфере наблюдается на границах соприкосновения:
1) атмосферы и литосферы (поверхность суши);
2) атмосферы и гидросферы (поверхность океана);
3) гидросферы и литосферы (дно океана);
4) атмосферы, гидросферы и литосферы (прибрежная зона).

13 Верхняя граница биосферы по атмосфере проходит на высоте 22-24 км. Проникновению жизни выше препятствует:
1) отсутствие кислорода;
2) низкая температура;
3) жесткая радиация;
4) озоновый экран;.
14 Нижняя граница биосферы по литосфере проходит на глубине 3-4 км. Проникновению жизни ниже препятствует:
1) отсутствие кислорода;
2) высокое давление горных пород;
3) высокая температура земных недр;
4) чувство одиночества.
15 Значение озонового слоя в том, что он:
1) поглощает часть ультрафиолетового излучения;
2) поглощает часть инфракрасного излучения;
3) ограничивает проникновение жизни за его пределы;
3) вырабатывает витамин D
Часть В

В1 К косному веществу биосферы относятся:

  1. нефть, 2)каменный уголь 3) почва

4) гранит 5)базальт 6)метеориты

В2 Установите соответствие между полезными ископаемыми и их видами

  1. энергия Солнца А) исчерпаемые

  2. растительный и животный мир; Б) неисчерпаемые

  3. плодородие почв;

  4. атмосферный воздух.

  5. каменный уголь

В3 Закончите предложение

Из-за распашки больших площадей в США, Казахстане и Украине обычно возникают …

В4 Установите соответствие между компонентами и веществом биосферы

  1. газы атмосферы А) живое

  2. растения и животные Б) биогенное

  3. лава вулканов В) косное

  4. воды Мирового океана Г) биокосное

  5. гранит и базальт

Часть С

С1 Почему граница биосферы в атмосфере проходит на высоте 20 км?

С 2 Живое вещество является мощной геологической силой, преобразующей лик планеты. Приведите примеры влияния живого вещества на оболочки Земли.

С3. Прочитайте текст и найдите в нем предложения, в которых содержатся биологические ошибки. Запишите сначала номера этих предложений, а затем их правильно сформулируйте.

1. Все экологические факторы, действующие на организмы подразделяются на биотические, геологические и антропогенные.

2. Биотические факторы - это температурные, климатические условия, влажность, освещенность.

3. Антропогенные факторы - влияние человека и продуктов его деятельности на среду.

4. Промышленные предприятия и автомобили служат причиной поступления в атмосферу многих ядовитых соединений- оксидов азота, оксида углерода, соединений свинца, различных углеводородов

5. Парниковый эффект вызывает повышенное содержание в атмосфере оксидов азота, серы.

Вариант 3

Часть А. Выпишите номера правильных ответов.

1. Биосфера - это:

1) водная оболочка Земли, заселенная живыми организмами;
2) воздушная оболочка Земли, заселенная живыми организмами;
3) твердая оболочка Земли, заселенная живыми организмами;
4) часть всех оболочек Земли, заселенная живыми организмами.

2. Термин «биосфера» был предложен: 1) Ж.-Б. Ламарком; 2) В.И. Вернадским;

3) Э.Зюссом; 4) Э.Леруа.

3. Границы биосферы в гидросфере проходят на глубине:

1) 1 км; 2) 2 км; 3) 10 км; 4) гидросфера заселена живыми организмами полностью.

4. Сгущение жизни на дне Мирового океана называется:

1) планктон; 2) нектон; 3) бентос; 4) нейстон

5. В пустыне Уайт Сэндс (США) фактором, ограничивающим распространение жизни, является:

1) отсутствие воды в жидкой фазе;

2) концентрация соли свыше 270 г/л;
3) отсутствие элементов минерального питания;

4) все перечисленные условия.

6. Совокупность всех живых организмов биосферы В.И. Вернадский предложил назвать:

1) жизнь; 2) биомасса; 3) живое вещество; 4) правильного ответа нет.

7. К биокосному веществу биосферы относятся:

1) нефть, каменный уголь, известняк;

2) почва;

3) гранит, базальт;

4) растения, животные, бактерии, грибы.

8. Газовая функция живого вещества состоит в способности:

1) живых организмов накапливать и передавать по пищевой цепи энергию;
2) зеленых растений использовать СО2 и выделять в атмосферу О2;
3) хемоавтотрофов окислять химические элементы;
4) живых организмов накапливать различные химические элементы.

9. Биосфера - это:

1) глобальная саморегулирующаяся со своим входом и выходом

2) глобальная нерегулирующаяся система, имеющая вход

3) глобальная нерегулирующаяся система, имеющая выход

4) глобальная саморегулирующаяся система, имеющая вход, но не имеющая выхода

10. Учение о ноосфере было разработано:

1) В.И. Вернадским; 2) Э.Леруа; 3) П.Тейаром-де-Шарденом; 4) все ответы верны.

11. Загрязнение атмосферы оксидами серы и азота способствует

1) разрушению озонового слоя

2) разрушению структуры пахотного слоя

3) выпадению кислотных дождей и уничтожению лесов

4) вымыванию из почвы питательных веществ

12. Какие факторы привели к сокращению рыбных запасов Мирового океана

  1. антропогенные 2)абиотические

3)биотические 4)климатические

13. Биологический круговорот веществ в биосфере, обеспечивающий её устойчивость и целостность, обусловлен

1) жизнедеятельностью всех организмов

2) климатическими условиями

3) сезонными изменениями в природе

4) вулканической деятельностью

14. Защита природной среды от загрязнения промышленными и сельскохозяйственными отходами- мера охраны среды обитания организмов, способствующая

  1. формированию новых видов

  2. возникновению у организмов приспособлений

  3. сохранению биоразнообразия

  4. проявлению саморегуляции

  1. Природные территории, на которых запрещена хозяйственная деятельность человека с целью восстановления численности популяций редких видов растений и животных, охраны флоры и фауны, представляют собой

  1. Агроценозы 2)Заповедники

3)Ботанические сады 4)Полезащитные лесные полосы

Часть В

В1 Основными функциями живого вещества являются

  1. Энергетическая

  2. репродуктивная

  3. биогеохимическая

  4. восстановительная

  5. Газовая

  6. Концентрационная

В2 Установите соответствие между косвенным и прямым влиянием человека на природу

А) истощение почв 1) создание агроценозов

Б) торфяные пожары 2) осушение болот

В) понижение уровня грунтовых вод

Г) уменьшение биоразнообразия

Д) обмеление рек

В3 Закончите предложение

Биокосное вещество биосферы, возникающее при взаимодействии живых организмов и окружающей среды -

В4 Какие факторы определяют границы биосферы в атмосфере?

  1. Жесткий ультрафиолет

  2. страх высоты.

  3. низкая температура воздуха

  4. отсутствие кислорода и углекислого газа

  5. высокий уровень радиации

  6. Высокое давление
    Часть С

С1. Приведите несколько определений биосферы.

С2 Какое значение имеет калий в жизни растений?

С3 Какое значение оказало возникновение городов на биосферу Земли?






Приложение 2

HNO3

HNO3Круговорот азота

АТМОСФЕРА

N2 NO NO2

Методические рекомендации по теме Человек и окружающая среда

Методические рекомендации по теме Человек и окружающая средаМетодические рекомендации по теме Человек и окружающая средаМетодические рекомендации по теме Человек и окружающая средаМетодические рекомендации по теме Человек и окружающая средаденитрификаторы

NH3 NH3 NH3 NO3-

NH4+ (NH2)2CO





Круговорот кислорода

ЛИТОСФЕРА

Дыхание горение брожение гниение окисление

Методические рекомендации по теме Человек и окружающая среда









© 2010-2022